Search results for: ArcGIS data analysis
40546 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 18540545 Using the Textbook to Promote Thinking Skills in Intermediate School EFL Classrooms in Saudi Arabia: An Analysis of the Tasks and an Exploration of Teachers' and Perceptions
Authors: Nurah Saleh Alfares
Abstract:
An aim of TS in EFL is to help learners to understand how they learn, which could help them in using the target language with other learners in language classrooms, and in their social life. The early researchers have criticised the system of teaching methods in EFL applied in Saudi schools, as they claim that it does not produce students who are highly proficient in English. Some of them suggested that enhancing learners’ TS would help to improve the learners’ proficiency of using the EFL. The textbook in Saudi schools is the central material for teachers to follow in the EFL classroom. Thus, this study is investigating the main issues that could promote TS in Saudi EFL: the textbook and the teachers. The purposes of the study are: to find out the extent to which the tasks in the textbook have the potential to support teachers in promoting TS; to discover insights into the nature of classroom activities that teachers use to encourage TS from the textbook and to explore the teachers’ views on the role of the textbook in promoting TS in the English language. These aims will improve understanding of the connection between the potential of the textbook content and the participants’ theoretical knowledge and their teaching practice. The investigation employed research techniques including the following: (1) analysis of the textbook; (2) questionnaire for EFL teachers; (3) observation for EFL classroom; (4) interviews with EFL teachers. Analysis of the third intermediate grade textbook has been undertaken, and six EFL teachers from five intermediate schools were involved in the study. Data analysis revealed that 36.71 % of the tasks in the textbook could have the potential to promote TS, and 63.29 % of the tasks in the textbook could not have the potential to promote TS. Therefore, the result of the textbook analysis showed that the majority of the tasks do not have the potential to help teachers to promote TS. Although not all teachers of the observed lessons displayed behaviour helpful to promote TS, teachers, who presented potential TS tasks in their lesson encouraged learners’ interaction and students’ engagement more than teachers who presented tasks that did not have the potential to promote TS. Therefore, the result of the teachers’ data showed that having a textbook that has the potential to promote TS is not enough to develop teaching TS in Saudi EFL since teachers’ behaviour could make the task more or less productive.Keywords: English as a Foreign Language, metacognitive skills, textbook, thinking skills
Procedia PDF Downloads 12540544 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 9440543 Cracking the ‘Glass Ceiling’ Code: The Intricate Dance of Gender and Discipline in Chinese Research University’s Career Promotion
Authors: Yu Yitian, Chen Kaizhe, Liu Jin
Abstract:
'Glass ceiling' phenomenon refers to the invisible barriers that specific groups encounter in career advancement within organizations. This phenomenon is widespread all over the world and is prevalent among university faculty. However, there has been limited attention in the previous studies on Chinese university faculty. This research mainly focuses on whether the existence of 'glass ceiling' phenomenon exists among female faculty in the Chinese academic community and the characteristics among different disciplines in China. By utilizing the big data from education faculty members in 149 research-oriented universities in China, the research employs a Curriculum Vitae analysis to draw the academic career trajectories of faculty, along with potential variations across different academic disciplines within the Chinese academic landscape. This research addresses the existing gap in the scholarly investigation of gender equality in China and is helpful to promote gender equality in the academic community.Keywords: big data, China academic community, curriculum vitae analysis, glass ceiling
Procedia PDF Downloads 5340542 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph
Authors: Youhang Zhou, Weimin Zeng, Qi Xie
Abstract:
Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.Keywords: guide surface, wear defects, feature extraction, data visualization
Procedia PDF Downloads 51740541 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia
Authors: Fathul Mubin, Budi E. Nurcahya
Abstract:
In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index
Procedia PDF Downloads 19240540 Transportation Accidents Mortality Modeling in Thailand
Authors: W. Sriwattanapongse, S. Prasitwattanaseree, S. Wongtrangan
Abstract:
The transportation accidents mortality is a major problem that leads to loss of human lives, and economic. The objective was to identify patterns of statistical modeling for estimating mortality rates due to transportation accidents in Thailand by using data from 2000 to 2009. The data was taken from the death certificate, vital registration database. The number of deaths and mortality rates were computed classifying by gender, age, year and region. There were 114,790 cases of transportation accidents deaths. The highest average age-specific transport accident mortality rate is 3.11 per 100,000 per year in males, Southern region and the lowest average age-specific transport accident mortality rate is 1.79 per 100,000 per year in females, North-East region. Linear, poisson and negative binomial models were chosen for fitting statistical model. Among the models fitted, the best was chosen based on the analysis of deviance and AIC. The negative binomial model was clearly appropriate fitted.Keywords: transportation accidents, mortality, modeling, analysis of deviance
Procedia PDF Downloads 24440539 Evaluation the Financial and Social Efficiency of Microfinance Institutions Using Data Envelope Analysis - A Sample Study of Active Microfinance Institutions in India
Authors: Hiba Mezaache
Abstract:
The study aims to assess the financial and social efficiency of microfinance institutions in india for the period 2015-2019 by using two models of economies of scale and choosing the output direction of the data envelope analysis (DEA) method and using the MIX MARKET database. The study concluded that microfinance institutions focus on achieving financial efficiency beyond their focus on achieving social efficiency to ensure their continuity in the market. Convergence in the efficiency ratios that have been achieved, but the optimum ratios have been achieved under the changing economies of scale; Efficiency is affected by the depth of reaching low-income groups, as serving this group raises costs and risks. The importance of lending to women in rural areas and raising their awareness to ensure their financial and social empowerment; Make improvements in operating expenses, asset management, and loan personnel control in order to maximize output.Keywords: microfinance, financial efficiency, social efficiency, mix market, microfinance institutions
Procedia PDF Downloads 15340538 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future
Authors: Mazharuddin Syed Ahmed
Abstract:
This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.Keywords: building information modelling, circular economy integration, digital twin, predictive analytics
Procedia PDF Downloads 4140537 Ethics Can Enable Open Source Data Research
Authors: Dragana Calic
Abstract:
The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions
Procedia PDF Downloads 28240536 Moderation Effects of Legal Origin on Corruption and Corporate Performance
Authors: S. Sundarasen, I. Ibrahim
Abstract:
This study examines whether the legal origin of a country alters the association between corruption and corporate performance in the East Asia and South East Asia Region. A total of 18,286 companies from 14 countries in the East Asia and South East Asia Region are tested using Generalized Least Square (GLS) panel and pool data analysis with the cross-section being the income level. The data is further analyzed in terms of high income, upper middle income and low-income countries within the East and South Asia region. The empirical results indicate that legal origin positively moderates the relationship between a country’s corruption level and firm performance. As for the sub-analysis, legal origin positively moderates only in the high and upper middle-income countries. As for the low-income countries, no significance is documented in both the common and civil law.Keywords: corruption, performance, legal origin, East Asia and South East Asia Region
Procedia PDF Downloads 16140535 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels
Authors: S. H. Liao, J. M. Huang
Abstract:
The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics
Procedia PDF Downloads 2940534 Detecting Model Financial Statement Fraud by Auditor Industry Specialization with Fraud Triangle Analysis
Authors: Reskino Resky
Abstract:
This research purposes to create a model to detecting financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. This research used sample of company which is listed in Indonesian Stock Exchange that have sanctions and cases by Financial Services Authority in 2011-2013. The number of company that were became in this research were 30 fraud company and 30 non-fraud company. The method of determining the sample is by using purposive sampling method with judgement sampling, while the data processing methods used by researcher are mann-whitney u and discriminants analysis. This research have two from five variable that can be process with discriminant analysis. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.Keywords: fraud triangle analysis, financial targets, financial stability, auditor industry specialization, financial statement fraud
Procedia PDF Downloads 45540533 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 43940532 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan
Authors: Mohd Asrul Affedi, Nyi Nyi Naing
Abstract:
Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS
Procedia PDF Downloads 46240531 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector
Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts
Abstract:
At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion
Procedia PDF Downloads 18440530 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation
Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das
Abstract:
Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).Keywords: clipping, compression, resolution, seismic scaling
Procedia PDF Downloads 46740529 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 41940528 An Application of Content Analysis, SWOT Analysis, and the TOPSIS Method: A Case Study of the 'Tourism Ambassador' Program in Indonesia
Authors: Gilang Maulana Majid
Abstract:
If a government program remains scientifically uncontested for a long time, it is likely that its effects will be far from expected as there is no concrete evaluation of the steps being taken. This article identifies how such a theory aptly describes the case of the 'tourism ambassador' program in Indonesia. Being set out as one of the tourism promotional means of many regional governments in Indonesia, this program is heavily criticized for being ineffective despite a large number of budgets being spent on an annual basis. Taking the program as a case study, this article applies content analysis, SWOT analysis, and TOPSIS as data analysis methods, with a total of 56 tourism ambassadors invited to become coders, respondents, and/or interviewees in this research. The study reveals the SWOT of the program, recognizes four strategies that can be taken to optimize the program's effects and prioritizes a strategy based on the preferences of the involved tourism ambassadors using TOPSIS. It is found that incorporation of technology such as the creation of an online platform is, among others, the most expected approach to be taken to solve the problems concerning tourism ambassador program. However, based on the costs and benefits of each strategy presented in the current study, each alternative appears to have trade-offs between one and another.Keywords: Indonesia, optimization strategies, 'Tourism Ambassador' program, SWOT-TOPSIS
Procedia PDF Downloads 16540527 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 5940526 The Acceptance of Online Social Network Technology for Tourism Destination
Authors: Wanida Suwunniponth
Abstract:
The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.Keywords: Facebook, online social network, technology acceptance model, tourism destination
Procedia PDF Downloads 34340525 Spatio-Temporal Analysis of Drought in Cholistan Region, Pakistan: An Application of Standardized Precipitation Index
Authors: Qurratulain Safdar
Abstract:
Drought is a temporary aberration in contrast to aridity, as it is a permanent feature of climate. Virtually, it takes place in all types of climatic regions that range from high to low rainfall areas. Due to the wide latitudinal extent of Pakistan, there is seasonal and annual variability in rainfall. The south-central part of the country is arid and hyper-arid. This study focuses on the spatio-temporal analysis of droughts in arid and hyperarid region of Cholistan using the standardized precipitation index (SPI) approach. This study has assessed the extent of recurrences of drought and its temporal vulnerability to drought in Cholistan region. Initially, the paper described the geographic setup of the study area along with a brief description of the drought conditions that prevail in Pakistan. The study also provides a scientific foundation for preparing literature and theoretical framework in-line with the selected parameters and indicators. Data were collected both from primary and secondary data sources. Rainfall and temperature data were obtained from Pakistan Meteorology Department. By applying geostatistical approach, a standardized precipitation index (SPI) was calculated for the study region, and the value of spatio-temporal variability of drought and its severity was explored. As a result, in-depth spatial analysis of drought conditions in Cholistan area was found. Parallel to this, drought-prone areas with seasonal variation were also identified using Kriging spatial interpolation techniques in a GIS environment. The study revealed that there is temporal variation in droughts' occurrences both in time series and SPI values. The paper is finally concluded, and strategic plan was suggested to minimize the impacts of drought.Keywords: Cholistan desert, climate anomalies, metrological droughts, standardized precipitation index
Procedia PDF Downloads 21140524 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 21040523 The Contribution of Sanitation Practices to Marine Pollution and the Prevalence of Water-Borne Diseases in Prampram Coastal Area, Greater Accra-Ghana
Authors: Precious Roselyn Obuobi
Abstract:
Background: In Ghana, water-borne diseases remain a public health concern due to its impact. While marine pollution has been linked to outbreak of diseases especially in communities along the coast, associated risks such as oil spillage, marine debris, erosion, improper waste disposal and management practices persist. Objective: The study seeks to investigate sanitation practices that contribute to marine pollution in Prampram and the prevalence of selected water-borne diseases (diarrhea and typhoid fever). Method: This study used a descriptive cross-sectional design, employing the mix-method (qualitative and quantitative) approach. Twenty-two (22) participants were selected and semistructured questionnaire were administered to them. Additionally, interviews were conducted to collect more information. Further, an observation check-list was used to aid the data collection process. Secondary data comprising information on water-borne diseases in the district was acquired from the district health directorate to determine the prevalence of selected water-borne diseases in the community. Data Analysis: The qualitative data was analyzed using NVIVO® software by adapting the six steps thematic analysis by Braun and Clarke whiles STATA® version 16 was used to analyze the secondary data collected from the district health directorate. A descriptive statistic employed using mean, standard deviation, frequencies and proportions were used to summarize the results. Results: The results showed that open defecation and indiscriminate waste disposal were the main practices contributing to marine pollution in Prampram and its effect on public health. Conclusion: These findings have implications on public health and the environment, thus effort needs to be stepped up in educating the community on best sanitation practices.Keywords: environment, sanitation, marine pollution, water-borne diseases
Procedia PDF Downloads 7540522 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 30840521 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 12540520 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 16840519 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region
Authors: Luisa Müting, Wisnu Harto Adiwijoyo
Abstract:
Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration
Procedia PDF Downloads 10140518 The Impact of Agricultural Product Export on Income and Employment in Thai Economy
Authors: Anucha Wittayakorn-Puripunpinyoo
Abstract:
The research objectives were 1) to study the situation and its trend of agricultural product export of Thailand 2) to study the impact of agricultural product export on income of Thai economy 3) the impact of agricultural product export on employment of Thai economy and 4) to find out the recommendations of agricultural product export policy of Thailand. In this research, secondary data were collected as yearly time series data from 1990 to 2016 accounted for 27 years. Data were collected from the Bank of Thailand database. Primary data were collected from the steakholders of agricultural product export policy of Thailand. Data analysis was applied descriptive statistics such as arithmetic mean, standard deviation. The forecasting of agricultural product was applied Mote Carlo Simulation technique as well as time trend analysis. In addition, the impact of agricultural product export on income and employment by applying econometric model while the estimated parameters were utilized the ordinary least square technique. The research results revealed that 1) agricultural product export value of Thailand from 1990 to 2016 was 338,959.5 Million Thai baht with its growth rate of 4.984 percent yearly, in addition, the forecasting of agricultural product export value of Thailand has increased but its growth rate has been declined 2) the impact of agricultural product export has positive impact on income in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.0051 percent 3) the impact of agricultural product export has positive impact on employment in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.079 percent and 4) in the future, agricultural product export policy would focused on finished or semi-finished agricultural product instead of raw material by applying technology and innovation in to make value added of agricultural product export. The public agricultural product export policy would support exporters in private sector in order to encourage them as agricultural exporters in Thailand.Keywords: agricultural product export, income, employment, Thai economy
Procedia PDF Downloads 30940517 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 104