Search results for: thermal bonding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3913

Search results for: thermal bonding

2443 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments

Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan

Abstract:

Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.

Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX

Procedia PDF Downloads 564
2442 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures

Authors: Pradeep G. Siddheshwar, K. M. Lakshmi

Abstract:

The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.

Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium

Procedia PDF Downloads 322
2441 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 174
2440 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 367
2439 Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface

Authors: Satpal Singh, Subhash Chander

Abstract:

An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions.

Keywords: dual flame, heat transfer, impingement, swirling insert, transmission efficiency

Procedia PDF Downloads 298
2438 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 307
2437 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 57
2436 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 477
2435 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 237
2434 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: photopolymerization, dimethacrylamide, the degree of conversion, compressive strength

Procedia PDF Downloads 156
2433 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study

Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti

Abstract:

This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.

Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss

Procedia PDF Downloads 67
2432 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding

Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar

Abstract:

The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.

Keywords: Fiber, Interface, Matrix, Micromechanics, Pull-out

Procedia PDF Downloads 119
2431 SEM Analysis of the Effectiveness of the Acid Etching on Cat Enamel

Authors: C. Gallottini, W. Di Mari, C. De Carolis, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

The aim of this paper is to summarize the literature on micromorphology and composition of the enamel of the cat and present an original experiment by SEM on how it responds to the etching with ortophosphoric acid for the time recommended in the veterinary literature (30", 45", 60"), derived from research and experience on human enamel; 21 teeth of cat were randomly divided into three groups of 7 (A, B, C): Group A was subjected to etching for 30 seconds by means of orthophosphoric acid to 40% on a circular area with diameter of about 2mm of the enamel coronal; the Groups B and C had the same treatment but, respectively, for 45 and 60 seconds. The samples obtained were observed by SEM to constant magnification of 1000x framing, in particular, the border area between enamel exposed and not exposed to etching to highlight differences. The images were subjected to the analysis of three blinded experienced operators in electron microscopy. In the enamel of the cat the etching for the times considered is not optimally effective for the purpose adhesives and the presence of a thick prismless layer could explain this situation. To improve this condition may clinically in the likeness of what is proposed for the enamel of human deciduous teeth: a bevel or a chamfer of 1 mm on the contour of the cavity to discover the prismatic enamel and increase the bonding surface.

Keywords: cat enamel, SEM, veterinary dentistry, acid etching

Procedia PDF Downloads 307
2430 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 368
2429 The Pyrolysis of Leather and Textile Waste in Carbonised Materials as an Element of the Circular Economy Model

Authors: Maciej Życki, Anna Kowalik-klimczak, Monika Łożyńska, Wioletta Barszcz, Jolanta Drabik Anna Kowalik-klimczak

Abstract:

The rapidly changing fashion trends generate huge amounts of leather and textile waste globally. The complexity of these types of waste makes recycling difficult in economic terms. Pyrolysis is suggested for this purpose, which transforms heterogeneous and complex waste into added-value products e.g. active carbons and soil fertilizer. The possibility of using pyrolysis for the valorization of leather and textile waste has been analyzed in this paper. In the first stage, leather and textile waste were subjected to TG/DTG thermogravimetric and DSC calorimetric analysis. These analyses provided basic information about thermochemical transformations and degradation rates during the pyrolysis of these types of waste and enabled the selection of the pyrolysis temperature. In the next stage, the effect of gas type using pyrolysis was investigated on the physicochemical properties, composition, structure, and formation of the specific surfaces of carbonized materials produced by means of a thermal treatment without oxygen access to the reaction chamber. These studies contribute some data about the thermal management and pyrolytic processing of leather and textile waste into useful carbonized materials, according to the circular economy model.

Keywords: pyrolysis, leather and textiles waste, composition and structure of carbonized materials, valorisation of waste, circular economy model

Procedia PDF Downloads 7
2428 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 120
2427 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving

Procedia PDF Downloads 342
2426 An Experimental Study on the Effect of Heat Input on the Weld Efficiency of TIG-MIG Hybrid Welding of Type-304 Austenitic Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

Welding is described as the process of joining metals so that bonding can be created as a result of inter-atomic penetration. This study investigated the influence of heat input on the efficiency of the welded joints of 304 stainless steel. Three welds joint were made from two similar 304 stainless steel plates of thickness 6 mm. The tensile results obtained showed that the maximum average tensile strength of 672 MPa is possessed by the sample A1 with low heat input. It was discovered that the tensile strength, % elongation and weld joint efficiency decreased with the increase in heat input into the weld. The average % elongation for the entire samples ranged from 28.4% to 36.5%. Sample A1 had the highest joint efficiency of 94.5%. However, the optimum welding current of 190 for TIG- MIG hybrid welding of type-304 austenite stainless steel can be recommended for advanced technological applications such as aircraft manufacturing, nuclear industry, automobile industry, and processing industry.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 199
2425 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 392
2424 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.

Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement

Procedia PDF Downloads 131
2423 Development of Potato Starch Based Active Packaging Films Loaded with Antioxidants and Its Effect on Shelf Life of Beef

Authors: Bilal Ahmad Ashwar, Inam u nisa, Asima Shah, Adil Gani, Farooq Ahmad Masoodi

Abstract:

The effects of 5% BHT and green tea extracts (GTE) on the physical, barrier, mechanical, thermal and antioxidant properties of potato starch films were investigated. Results showed both BHT and GTE significantly lowered solubility of films. Addition of BHT significantly decreased water vapour transmission rate. Both BHT and GTE promoted significant increase in the elastic modulus but a decrease in % EAB, however BHT was more effective in increasing elastic modulus. Increase in glass transition temperature (Tg) and enthalpy of transition (ΔH) of films was observed with the incorporation of GTE and BHT. Scanning electron microscopy (SEM) revealed smooth surface of the films. The DPPH radical scavenging ability of both BHT and GTE films were stronger in fatty food stimulant (95% ethanol. The GTE and BHT films were individually applied to fresh beef samples and were stored at 4 0C and room temperature for 10 days. Metmyoglobin formation and lipid oxidation (TBARS) were monitored periodically. The addition of GTE extracts and BHT resulted in decreases in metmyoglobin and TBARS values. We conclude that extracts of GTE and BHT have potential as preservatives for fresh beef.

Keywords: starch film, WVTR, tensile properties, SEM, thermal analysis, DPPH scavenging activity, TBARS, metmyoglobin

Procedia PDF Downloads 593
2422 Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique

Authors: Soufiene Ilahi

Abstract:

Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 65
2421 Modified Surface Morphology, Structure and Enhanced Weathering Performance of Polyester-Urethane/Organoclay Nanocomposite Coatings

Authors: Gaurav Verma

Abstract:

Organoclay loaded (0-5 weight %) polyester-urethane (PU) coatings were prepared with a branched hydroxyl-bearing polyester and an aliphatic poly-isocyanate. TEM micrographs show partial exfoliation and intercalation of clay platelets in organoclay-polyester dispersions. AFM surface images reveals that the PU hard domains tend to regularise and also self-organise into spherical shapes of sizes 50 nm (0 wt %), 60 nm (2 wt %) and 190 nm (4 wt %) respectively. IR analysis shows that PU chains have increasing tendency to interact with exfoliated clay platelets through hydrogen bonding. This interaction strengthens inter-chain linkages in PU matrix and hence improves anti-ageing properties. 1000 hours of accelerated weathering was evaluated by ATR spectroscopy, while yellowing and overall discoloration was quantified by the Δb* and ΔE* values of the CIELab colour scale. Post-weathering surface properties also showed improvement as the loss of thickness and reduction in gloss in neat PU was 25% and 42%; while it was just 3.5% and 14% respectively for the 2 wt% nanocomposite coating. This work highlights the importance of modifying surface and bulk properties of PU coatings at nanoscale, which led to improved performance in accelerated weathering conditions.

Keywords: coatings, AFM, ageing, spectroscopy

Procedia PDF Downloads 454
2420 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam A. Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model

Procedia PDF Downloads 419
2419 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins

Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа

Abstract:

Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.

Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins

Procedia PDF Downloads 198
2418 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating

Authors: Merzak Laribi, Abdelmadjid Kasser

Abstract:

Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.

Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication

Procedia PDF Downloads 126
2417 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 322
2416 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 452
2415 Polyampholytic Resins: Advances in Ion Exchanging Properties

Authors: N. P. G. N. Chandrasekara, R. M. Pashley

Abstract:

Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.

Keywords: capacity, ion exchange, polyampholytic resin, regeneration

Procedia PDF Downloads 376
2414 Crystallization Fouling from Potable Water in Heat Exchangers and Evaporators

Authors: Amthal Al-Gailani, Olujide Sanni, Thibaut Charpentier, Anne Neville

Abstract:

Formation of inorganic scale on heat transfer surfaces is a serious problem encountered in industrial, commercial, and domestic heat exchangers and systems. Several industries use potable/groundwater sources such as rivers, lakes, and oceans to use water as a working fluid in heat exchangers and steamers. As potable/surface water contains diverse salt ionic species, the scaling kinetics and deposit morphology are expected to be different from those found in artificially hardened solutions. In this work, scale formation on the heat transfer surfaces from potable water has been studied using a once-through open flow cell under atmospheric pressure. The surface scaling mechanism and deposit morphology are investigated at high surface temperature. Thus the water evaporation process has to be considered. The effect of surface temperature, flow rate, and inhibitor deployment on the thermal resistance and morphology of the scale have been investigated. The study findings show how an increase in surface temperature enhances the crystallization reaction kinetics on the surface. There is an increase in the amount of scale and the resistance to heat transfer. The fluid flow rate also increases the fouling resistance and the thickness of the scale layer.

Keywords: fouling, heat exchanger, thermal resistance, crystallization, potable water

Procedia PDF Downloads 145