Search results for: passive optical networks (PONs)
3677 On Virtual Coordination Protocol towards 5G Interference Mitigation: Modelling and Performance Analysis
Authors: Bohli Afef
Abstract:
The fifth-generation (5G) wireless systems is featured by extreme densities of cell stations to overcome the higher future demand. Hence, interference management is a crucial challenge in 5G ultra-dense cellular networks. In contrast to the classical inter-cell interference coordination approach, which is no longer fit for the high density of cell-tiers, this paper proposes a novel virtual coordination based on the dynamic common cognitive monitor channel protocol to deal with the inter-cell interference issue. A tractable and flexible model for the coverage probability of a typical user is developed through the use of the stochastic geometry model. The analyses of the performance of the suggested protocol are illustrated both analytically and numerically in terms of coverage probability.Keywords: ultra dense heterogeneous networks, dynamic common channel protocol, cognitive radio, stochastic geometry, coverage probability
Procedia PDF Downloads 3263676 Evaluation of Routing Protocols in Mobile Adhoc Networks
Authors: Anu Malhotra
Abstract:
An Ad-hoc network is one that is an autonomous, self configuring network made up of mobile nodes connected via wireless links. Ad-hoc networks often consist of nodes, mobile hosts (MH) or mobile stations (MS, also serving as routers) connected by wireless links. Different routing protocols are used for data transmission in between the nodes in an adhoc network. In this paper two protocols (OLSR and AODV) are analyzed on the basis of two parameters i.e. time delay and throughput with different data rates. On the basis of these analysis, we observed that with same data rate, AODV protocol is having more time delay than the OLSR protocol whereas throughput for the OLSR protocol is less compared to the AODV protocol.Keywords: routing adhoc, mobile hosts, mobile stations, OLSR protocol, AODV protocol
Procedia PDF Downloads 5083675 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver
Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen
Abstract:
This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network
Procedia PDF Downloads 783674 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W
Authors: Manish Kumar Rajak, Sanjay Gupta
Abstract:
Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.Keywords: mesh networks, MANET, packet count, threshold, throughput
Procedia PDF Downloads 4763673 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 763672 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems
Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib
Abstract:
We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.Keywords: thin films, photovoltaic, hybrid systems, heterojunction
Procedia PDF Downloads 2763671 Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response
Authors: Anton S. Perin, Vladimir M. Shandarov
Abstract:
Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration.Keywords: self-action, soliton, lithium niobate, piroliton, photorefractive effect, pyroelectric effect
Procedia PDF Downloads 1683670 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 1393669 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1503668 Exploring Long-Term Care Support Networks and Social Capital for Family Caregivers
Authors: Liu Yi-Hui, Chiu Fan-Yun, Lin Yu Fang, Jhang Yu Cih, He You Jing
Abstract:
The demand for care support has been rising with the aging of society and the advancement of medical science and technology. To meet rising demand, the Taiwanese government promoted the “Long Term Care Ten-Year Plan 2.0” in 2017. However, this policy and its related services failed to be fully implemented because of the ignorance of the public, and their lack of desire, fear, or discomfort in using them, which is a major obstacle to the promotion of long-term care services. Given the above context, this research objectives included the following: (1) to understand the current situation and predicament of family caregivers; (2) to reveal the actual use and assistance of government’s long-term care resources for family caregivers; and (3) to explore the support and impact of social capital on family caregivers. A semi-structured in-depth interview with five family caregivers to understand long-term care networks and social capital for family caregivers.Keywords: family caregivers, long-term care, social capital
Procedia PDF Downloads 1623667 Quantitative Comparisons of Different Approaches for Rotor Identification
Authors: Elizabeth M. Annoni, Elena G. Tolkacheva
Abstract:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors
Procedia PDF Downloads 3243666 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics
Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih
Abstract:
Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability
Procedia PDF Downloads 1593665 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs
Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan
Abstract:
Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.Keywords: PL, phosphor, quantum yield, white LED
Procedia PDF Downloads 763664 Opinion Mining and Sentiment Analysis on DEFT
Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala
Abstract:
Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet
Procedia PDF Downloads 1413663 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 383662 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein
Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra
Abstract:
Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.Keywords: TSPO, molecular modeling, imaging, docking
Procedia PDF Downloads 4633661 Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments
Authors: Alberto Mínguez-Martínez, Jesús De Vicente Y Oliva
Abstract:
It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented.Keywords: industrial environment, material standards, optical measuring instrument, traceability
Procedia PDF Downloads 1223660 The Fibonacci Network: A Simple Alternative for Positional Encoding
Authors: Yair Bleiberg, Michael Werman
Abstract:
Coordinate-based Multi-Layer Perceptrons (MLPs) are known to have difficulty reconstructing high frequencies of the training data. A common solution to this problem is Positional Encoding (PE), which has become quite popular. However, PE has drawbacks. It has high-frequency artifacts and adds another hyper hyperparameter, just like batch normalization and dropout do. We believe that under certain circumstances, PE is not necessary, and a smarter construction of the network architecture together with a smart training method is sufficient to achieve similar results. In this paper, we show that very simple MLPs can quite easily output a frequency when given input of the half-frequency and quarter-frequency. Using this, we design a network architecture in blocks, where the input to each block is the output of the two previous blocks along with the original input. We call this a Fibonacci Network. By training each block on the corresponding frequencies of the signal, we show that Fibonacci Networks can reconstruct arbitrarily high frequencies.Keywords: neural networks, positional encoding, high frequency intepolation, fully connected
Procedia PDF Downloads 993659 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks
Authors: Jayesh M. Patel, Bharat P. Modi
Abstract:
The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.Keywords: cellular, Wi-Fi, mobile, smart phone
Procedia PDF Downloads 3673658 Measurements for Risk Analysis and Detecting Hazards by Active Wearables
Authors: Werner Grommes
Abstract:
Intelligent wearables (illuminated vests or hand and foot-bands, smart watches with a laser diode, Bluetooth smart glasses) overflow the market today. They are integrated with complex electronics and are worn very close to the body. Optical measurements and limitation of the maximum light density are needed. Smart watches are equipped with a laser diode or control different body currents. Special glasses generate readable text information that is received via radio transmission. Small high-performance batteries (lithium-ion/polymer) supply the electronics. All these products have been tested and evaluated for risk. These products must, for example, meet the requirements for electromagnetic compatibility as well as the requirements for electromagnetic fields affecting humans or implant wearers. Extensive analyses and measurements were carried out for this purpose. Many users are not aware of these risks. The result of this study should serve as a suggestion to do it better in the future or simply to point out these risks. Commercial LED warning vests, LED hand and foot-bands, illuminated surfaces with inverter (high voltage), flashlights, smart watches, and Bluetooth smart glasses were checked for risks. The luminance, the electromagnetic emissions in the low-frequency as well as in the high-frequency range, audible noises, and nervous flashing frequencies were checked by measurements and analyzed. Rechargeable lithium-ion or lithium-polymer batteries can burn or explode under special conditions like overheating, overcharging, deep discharge or using out of the temperature specification. Some risk analysis becomes necessary. The result of this study is that many smart wearables are worn very close to the body, and an extensive risk analysis becomes necessary. Wearers of active implants like a pacemaker or implantable cardiac defibrillator must be considered. If the wearable electronics include switching regulators or inverter circuits, active medical implants in the near field can be disturbed. A risk analysis is necessary.Keywords: safety and hazards, electrical safety, EMC, EMF, active medical implants, optical radiation, illuminated warning vest, electric luminescent, hand and head lamps, LED, e-light, safety batteries, light density, optical glare effects
Procedia PDF Downloads 1103657 Drought Risk Analysis Using Neural Networks for Agri-Businesses and Projects in Lejweleputswa District Municipality, South Africa
Authors: Bernard Moeketsi Hlalele
Abstract:
Drought is a complicated natural phenomenon that creates significant economic, social, and environmental problems. An analysis of paleoclimatic data indicates that severe and extended droughts are inevitable part of natural climatic circle. This study characterised drought in Lejweleputswa using both Standardised Precipitation Index (SPI) and neural networks (NN) to quantify and predict respectively. Monthly 37-year long time series precipitation data were obtained from online NASA database. Prior to the final analysis, this dataset was checked for outliers using SPSS. Outliers were removed and replaced by Expectation Maximum algorithm from SPSS. This was followed by both homogeneity and stationarity tests to ensure non-spurious results. A non-parametric Mann Kendall's test was used to detect monotonic trends present in the dataset. Two temporal scales SPI-3 and SPI-12 corresponding to agricultural and hydrological drought events showed statistically decreasing trends with p-value = 0.0006 and 4.9 x 10⁻⁷, respectively. The study area has been plagued with severe drought events on SPI-3, while on SPI-12, it showed approximately a 20-year circle. The concluded the analyses with a seasonal analysis that showed no significant trend patterns, and as such NN was used to predict possible SPI-3 for the last season of 2018/2019 and four seasons for 2020. The predicted drought intensities ranged from mild to extreme drought events to come. It is therefore recommended that farmers, agri-business owners, and other relevant stakeholders' resort to drought resistant crops as means of adaption.Keywords: drought, risk, neural networks, agri-businesses, project, Lejweleputswa
Procedia PDF Downloads 1283656 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 4913655 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3713654 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery
Authors: Colette Malyack, Pius Egbelu
Abstract:
Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics
Procedia PDF Downloads 1513653 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks
Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu
Abstract:
The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding
Procedia PDF Downloads 933652 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image
Authors: Salah Abdul Hameed Saleh, Ghada Hasan
Abstract:
The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area
Procedia PDF Downloads 4423651 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: clustering analysis, community of practice, data mining, higher education, new faculty challenges, social network, social influence, professional development
Procedia PDF Downloads 1843650 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks
Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger
Abstract:
The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.Keywords: modularity, innovation performance, networks, R&D, collaboration
Procedia PDF Downloads 5213649 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 3983648 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles
Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo
Abstract:
Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.Keywords: surface texturing, surface modification, topography, ultrasonic
Procedia PDF Downloads 223