Search results for: continuous data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26704

Search results for: continuous data

25234 Branding in FMCG Sector in India: A Comparison of Indian and Multinational Companies

Authors: Pragati Sirohi, Vivek Singh Rana

Abstract:

Brand is a name, term, sign, symbol or design or a combination of all these which is intended to identify the goods or services of one seller or a group of sellers and to differentiate them from those of the competitors and perception influences purchase decisions here and so building that perception is critical. The FMCG industry is a low margin business. Volumes hold the key to success in this industry. Therefore, the industry has a strong emphasis on marketing. Creating strong brands is important for FMCG companies and they devote considerable money and effort in developing brands. Brand loyalty is fickle. Companies know this and that is why they relentlessly work towards brand building. The purpose of the study is a comparison between Indian and Multinational companies with regard to FMCG sector in India. It has been hypothesized that after liberalization the Indian companies has taken up the challenge of globalization and some of these are giving a stiff competition to MNCs. There is an existence of strong brand image of MNCs compared to Indian companies. Advertisement expenditures of MNCs are proportionately higher compared to Indian counterparts. The operational area of the study is the country as a whole. Continuous time series data is available from 1996-2014 for the selected 8 companies. The selection of these companies is done on the basis of their large market share, brand equity and prominence in the market. Research methodology focuses on finding trend growth rates of market capitalization, net worth, and brand values through regression analysis by the usage of secondary data from prowess database developed by CMIE (Centre for monitoring Indian Economy). Estimation of brand values of selected FMCG companies is being attempted, which can be taken to be the excess of market capitalization over the net worth of a company. Brand value indices are calculated. Correlation between brand values and advertising expenditure is also measured to assess the effect of advertising on branding. Major results indicate that although MNCs enjoy stronger brand image but few Indian companies like ITC is the outstanding leader in terms of its market capitalization and brand values. Dabur and Tata Global Beverages Ltd are competing equally well on these values. Advertisement expenditures are the highest for HUL followed by ITC, Colgate and Dabur which shows that Indian companies are not behind in the race. Although advertisement expenditures are playing a role in brand building process there are many other factors which affect the process. Also, brand values are decreasing over the years for FMCG companies in India which show that competition is intense with aggressive price wars and brand clutter. Implications for Indian companies are that they have to consistently put in proactive and relentless efforts in their brand building process. Brands need focus and consistency. Brand longevity without innovation leads to brand respect but does not create brand value.

Keywords: brand value, FMCG, market capitalization, net worth

Procedia PDF Downloads 356
25233 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
25232 Tuberculosis (TB) and Lung Cancer

Authors: Asghar Arif

Abstract:

Lung cancer has been recognized as one of the greatest common cancers, causing the annual mortality rate of about 1.2 million people in the world. Lung cancer is the most prevalent cancer in men and the third-most common cancer among women (after breast and digestive cancers).Recent evidences have shown the inflammatory process as one of the potential factors of cancer. Tuberculosis (TB), pneumonia, and chronic bronchitis are among the most important inflammation-inducing factors in the lungs, among which TB has a more profound role in the emergence of cancer.TB is one of the important mortality factors throughout the world, and 205,000 death cases are reported annually due to this disease. Chronic inflammation and fibrosis due to TB can induce genetic mutation and alternations. Parenchyma tissue of lung is involved in both diseases of TB and lung cancer, and continuous cough in lung cancer, morphological vascular variations, lymphocytosis processes, and generation of immune system mediators such as interleukins, are all among the factors leading to the hypothesis regarding the role of TB in lung cancer Some reports have shown that the induction of necrosis and apoptosis or TB reactivation, especially in patients with immune-deficiency, may result in increasing IL-17 and TNF_α, which will either decrease P53 activity or increase the expression of Bcl-2, decrease Bax-T, and cause the inhibition of caspase-3 expression due to decreasing the expression of mitochondria cytochrome oxidase. It has been also indicated that following the injection of BCG vaccine, the host immune system will be reinforced, and in particular, the rates of gamma interferon, nitric oxide, and interleukin-2 are increased. Therefore, CD4 + lymphocyte function will be improved, and the person will be immune against cancer.Numerous prospective studies have so far been conducted on the role of TB in lung cancer, and it seems that this disease is effective in that particular cancer.One of the main challenges of lung cancer is its correct and timely diagnosis. Unfortunately, clinical symptoms (such as continuous cough, hemoptysis, weight loss, fever, chest pain, dyspnea, and loss of appetite) and radiological images are similar in TB and lung cancer. Therefore, anti-TB drugs are routinely prescribed for the patients in the countries with high prevalence of TB, like Pakistan. Regarding the similarity in clinical symptoms and radiological findings of lung cancer, proper diagnosis is necessary for TB and respiratory infections due to nontuberculousmycobacteria (NTM). Some of the drug resistive TB cases are, in fact, lung cancer or NTM lung infections. Acid-fast staining and histological study of phlegm and bronchial washing, culturing and polymerase chain reaction TB are among the most important solutions for differential diagnosis of these diseases. Briefly, it is assumed that TB is one of the risk factors for cancer. Numerous studies have been conducted in this regard throughout the world, and it has been observed that there is a significant relationship between previous TB infection and lung cancer. However, to prove this hypothesis, further and more extensive studies are required. In addition, as the clinical symptoms and radiological findings of TB, lung cancer, and non-TB mycobacteria lung infections are similar, they can be misdiagnosed as TB.

Keywords: TB and lung cancer, TB people, TB servivers, TB and HIV aids

Procedia PDF Downloads 73
25231 Optimal Location of the I/O Point in the Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.

Keywords: parking system, optimal location, response time, S/R machine

Procedia PDF Downloads 409
25230 Data Protection, Data Privacy, Research Ethics in Policy Process Towards Effective Urban Planning Practice for Smart Cities

Authors: Eugenio Ferrer Santiago

Abstract:

The growing complexities of the modern world on high-end gadgets, software applications, scams, identity theft, and Artificial Intelligence (AI) make the “uninformed” the weak and vulnerable to be victims of cybercrimes. Artificial Intelligence is not a new thing in our daily lives; the principles of database management, logical programming, and garbage in and garbage out are all connected to AI. The Philippines had in place legal safeguards against the abuse of cyberspace, but self-regulation of key industry players and self-protection by individuals are primordial to attain the success of these initiatives. Data protection, Data Privacy, and Research Ethics must work hand in hand during the policy process in the course of urban planning practice in different environments. This paper focuses on the interconnection of data protection, data privacy, and research ethics in coming up with clear-cut policies against perpetrators in the urban planning professional practice relevant in sustainable communities and smart cities. This paper shall use expository methodology under qualitative research using secondary data from related literature, interviews/blogs, and the World Wide Web resources. The claims and recommendations of this paper will help policymakers and implementers in the policy cycle. This paper shall contribute to the body of knowledge as a simple treatise and communication channel to the reading community and future researchers to validate the claims and start an intellectual discourse for better knowledge generation for the good of all in the near future.

Keywords: data privacy, data protection, urban planning, research ethics

Procedia PDF Downloads 59
25229 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)

Procedia PDF Downloads 256
25228 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 360
25227 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework

Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy

Abstract:

Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.

Keywords: digital preservation, metadata, OAIS, PDI, XML

Procedia PDF Downloads 393
25226 The Trigger-DAQ System in the Mu2e Experiment

Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella

Abstract:

The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).

Keywords: trigger, daq, mu2e, Fermilab

Procedia PDF Downloads 155
25225 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 124
25224 Harmonizing Spatial Plans: A Methodology to Integrate Sustainable Mobility and Energy Plans to Promote Resilient City Planning

Authors: B. Sanchez, D. Zambrana-Vasquez, J. Fresner, C. Krenn, F. Morea, L. Mercatelli

Abstract:

Local administrations are facing established targets on sustainable development from different disciplines at the heart of different city departments. Nevertheless, some of these targets, such as CO2 reduction, relate to two or more disciplines, as it is the case of sustainable mobility and energy plans (SUMP & SECAP/SEAP). This opens up the possibility to efficiently cooperate among different city departments and to create and develop harmonized spatial plans by using available resources and together achieving more ambitious goals in cities. The steps of the harmonization processes developed result in the identification of areas to achieve common strategic objectives. Harmonization, in other words, helps different departments in local authorities to work together and optimize the use or resources by sharing the same vision, involving key stakeholders, and promoting common data assessment to better optimize the resources. A methodology to promote resilient city planning via the harmonization of sustainable mobility and energy plans is presented in this paper. In order to validate the proposed methodology, a representative city engaged in an innovation process in efficient spatial planning is used as a case study. The harmonization process of sustainable mobility and energy plans covers identifying matching targets between different fields, developing different spatial plans with dual benefit and common indicators guaranteeing the continuous improvement of the harmonized plans. The proposed methodology supports local administrations in consistent spatial planning, considering both energy efficiency and sustainable mobility. Thus, municipalities can use their human and economic resources efficiently. This guarantees an efficient upgrade of land use plans integrating energy and mobility aspects in order to achieve sustainability targets, as well as to improve the wellbeing of its citizens.

Keywords: integrated multi-sector planning, spatial plans harmonization, sustainable energy and climate action plan, sustainable urban mobility plan

Procedia PDF Downloads 178
25223 Closed Incision Negative Pressure Therapy Dressing as an Approach to Manage Closed Sternal Incisions in High-Risk Cardiac Patients: A Multi-Centre Study in the UK

Authors: Rona Lee Suelo-Calanao, Mahmoud Loubani

Abstract:

Objective: Sternal wound infection (SWI) following cardiac operation has a significant impact on patient morbidity and mortality. It also contributes to longer hospital stays and increased treatment costs. SWI management is mainly focused on treatment rather than prevention. This study looks at the effect of closed incision negative pressure therapy (ciNPT) dressing to help reduce the incidence of superficial SWI in high-risk patients after cardiac surgery. The ciNPT dressing was evaluated at 3 cardiac hospitals in the United Kingdom". Methods: All patients who had cardiac surgery from 2013 to 2021 were included in the study. The patients were classed as high risk if they have two or more of the recognised risk factors: obesity, age above 80 years old, diabetes, and chronic obstructive pulmonary disease. Patients receiving standard dressing (SD) and patients using ciNPT were propensity matched, and the Fisher’s exact test (two-tailed) and unpaired T-test were used to analyse categorical and continuous data, respectively. Results: There were 766 matched cases in each group. Total SWI incidences are lower in the ciNPT group compared to the SD group (43 (5.6%) vs 119 (15.5%), P=0.0001). There are fewer deep sternal wound infections (14(1.8%) vs. 31(4.04%), p=0.0149) and fewer superficial infections (29(3.7%) vs. 88 (11.4%), p=0.0001) in the ciNPT group compared to the SD group. However, the ciNPT group showed a longer average length of stay (11.23 ± 13 days versus 9.66 ± 10 days; p=0.0083) and higher mean logistic EuroSCORE (11.143 ± 13 versus 8.094 ± 11; p=0.0001). Conclusion: Utilization of ciNPT as an approach to help reduce the incidence of superficial and deep SWI may be effective in high-risk patients requiring cardiac surgery.

Keywords: closed incision negative pressure therapy, surgical wound infection, cardiac surgery complication, high risk cardiac patients

Procedia PDF Downloads 96
25222 Establishing Multi-Leveled Computability as a Living-System Evolutionary Context

Authors: Ron Cottam, Nils Langloh, Willy Ranson, Roger Vounckx

Abstract:

We start by formally describing the requirements for environmental-reaction survival computation in a natural temporally-demanding medium, and develop this into a more general model of the evolutionary context as a computational machine. The effect of this development is to replace deterministic logic by a modified form which exhibits a continuous range of dimensional fractal diffuseness between the isolation of perfectly ordered localization and the extended communication associated with nonlocality as represented by pure causal chaos. We investigate the appearance of life and consciousness in the derived general model, and propose a representation of Nature within which all localizations have the character of quasi-quantal entities. We compare our conclusions with Heisenberg’s uncertainty principle and nonlocal teleportation, and maintain that computability is the principal influence on evolution in the model we propose.

Keywords: computability, evolution, life, localization, modeling, nonlocality

Procedia PDF Downloads 399
25221 Addressing Supply Chain Data Risk with Data Security Assurance

Authors: Anna Fowler

Abstract:

When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.

Keywords: security by design, data security architecture, cybersecurity framework, data security assurance

Procedia PDF Downloads 89
25220 Cybersecurity Awareness through Laboratories and Cyber Competitions in the Education System: Practices to Promote Student Success

Authors: Haydar Teymourlouei

Abstract:

Cybersecurity is one of the greatest challenges society faces in an age revolving around technological development. With cyber-attacks on the continuous rise, the nation needs to understand and learn ways that can prevent such attacks. A major contribution that can change the education system is to implement laboratories and competitions into academia. This method can improve and educate students with more hands-on exercises in a highly motivating setting. Considering the fact that students are the next generation of the nation’s workforce, it is important for students to understand concepts not only through books, but also through actual hands-on experiences in order for them to be prepared for the workforce. An effective cybersecurity education system is critical for creating a strong cyber secure workforce today and for the future. This paper emphasizes the need for awareness and the need for competitions and cybersecurity laboratories to be implemented into the education system.

Keywords: awareness, competition, cybersecurity, laboratories, workforce

Procedia PDF Downloads 334
25219 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 136
25218 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
25217 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 172
25216 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
25215 Development and Evaluation of a Portable Ammonia Gas Detector

Authors: Jaheon Gu, Wooyong Chung, Mijung Koo, Seonbok Lee, Gyoutae Park, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we present a portable ammonia gas detector for performing the gas safety management efficiently. The display of the detector is separated from its body. The display module is received the data measured from the detector using ZigBee. The detector has a rechargeable li-ion battery which can be use for 11~12 hours, and a Bluetooth module for sending the data to the PC or the smart devices. The data are sent to the server and can access using the web browser or mobile application. The range of the detection concentration is 0~100ppm.

Keywords: ammonia, detector, gas, portable

Procedia PDF Downloads 417
25214 Impact of Climatic Hazards on the Jamuna River Fisheries and Coping and Adaptation Strategies

Authors: Farah Islam, Md. Monirul Islam, Mosammat Salma Akter, Goutam Kumar Kundu

Abstract:

The continuous variability of climate and the risk associated with it have a significant impact on the fisheries leading to a global concern for about half a billion fishery-based livelihoods. Though in the context of Bangladesh mounting evidence on the impacts of climate change on fishery-based livelihoods or their socioeconomic conditions are present, the country’s inland fisheries sector remains in a negligible corner as compared to the coastal areas which are spotted on the highlight due to its higher vulnerability to climatic hazards. The available research on inland fisheries, particularly river fisheries, has focussed mainly on fish production, pollution, fishing gear, fish biodiversity and livelihoods of the fishers. This study assesses the impacts of climate variability and changes on the Jamuna (a transboundary river called Brahmaputra in India) River fishing communities and their coping and adaptation strategies. This study has used primary data collected from Kalitola Ghat and Debdanga fishing communities of the Jamuna River during May, August and December 2015 using semi-structured interviews, oral history interviews, key informant interviews, focus group discussions and impact matrix as well as secondary data. This study has found that both communities are exposed to storms, floods and land erosions which impact on fishery-based livelihood assets, strategies, and outcomes. The impact matrix shows that human and physical capitals are more affected by climate hazards which in turn affect financial capital. Both communities have been responding to these exposures through multiple coping and adaptation strategies. The coping strategies include making dam with soil, putting jute sac on the yard, taking shelter on boat or embankment, making raised platform or ‘Kheua’ and involving with temporary jobs. While, adaptation strategies include permanent migration, change of livelihood activities and strategies, changing fishing practices and making robust houses. The study shows that migration is the most common adaptation strategy for the fishers which resulted in mostly positive outcomes for the migrants. However, this migration has impacted negatively on the livelihoods of existing fishers in the communities. In sum, the Jamuna river fishing communities have been impacted by several climatic hazards and they have traditionally coped with or adapted to the impacts which are not sufficient to maintain sustainable livelihoods and fisheries. In coming decades, this situation may become worse as predicted by latest scientific research and an enhanced level of response would be needed.

Keywords: climatic hazards, impacts and adaptation, fisherfolk, the Jamuna River

Procedia PDF Downloads 319
25213 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 235
25212 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging

Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury

Abstract:

This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.

Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server

Procedia PDF Downloads 220
25211 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.

Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution

Procedia PDF Downloads 515
25210 Biosorption of Heavy Metals from Aqueous Solutions by Plant Biomass

Authors: Yamina Zouambia, Khadidja Youcef Ettoumi, Mohamed Krea, Nadji Moulai Mostefa

Abstract:

Environment pollution through various wastes (particularly by heavy metals) is a major environmental problem due to industrialization and the development of various human activities. Considerable attention has been focused, in recent years, upon the field of biosorption which represents a biotechnological innovation as well as an excellent tool for removal of metal ions from aqueous effluents. So the purpose of this study is to valorize by-product which are orange peels and an extract of these peels (pectin; a heteropolysaccharide) in treatment of water containing heavy metals. All biosorption experiments were carried out at room temperature, an indicated pH, a precise amount of biosorbent and under continuous stirring. Biosorption kinetic was determined by evaluating the residual concentration of the metal ion at different time intervals using UV spectroscopy. The results obtained show that the orange peels and pectin are interesting biosorbents with maximum biosorption capacity of up to 140 mg/g.

Keywords: orange peels, pectin, heavy metals, biosorption

Procedia PDF Downloads 332
25209 Efficient Storage in Cloud Computing by Using Index Replica

Authors: Bharat Singh Deora, Sushma Satpute

Abstract:

Cloud computing is based on resource sharing. Like other resources which can be shareable, storage is a resource which can be shared. We can use collective resources of storage from different locations and maintain a central index table for storage details. The storage combining of different places can form a suitable data storage which is operated from one location and is very economical. Proper storage of data should improve data reliability & availability and bandwidth utilization. Also, we are moving the contents of one storage to other according to our need.

Keywords: cloud computing, cloud storage, Iaas, PaaS, SaaS

Procedia PDF Downloads 340
25208 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning

Authors: T. Bryan , V. Kepuska, I. Kostnaic

Abstract:

A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.

Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit

Procedia PDF Downloads 253
25207 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud

Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani

Abstract:

In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.

Keywords: privacy enforcement, platform-as-a-service privacy awareness, cloud computing privacy

Procedia PDF Downloads 227
25206 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 407
25205 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 168