Search results for: segmentation analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28100

Search results for: segmentation analysis

27980 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia

Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum

Abstract:

Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.

Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value

Procedia PDF Downloads 412
27979 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 161
27978 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 106
27977 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market

Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad

Abstract:

Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.

Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy

Procedia PDF Downloads 540
27976 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 320
27975 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation

Authors: Pavel Chmelar, Martin Dobrovolny

Abstract:

Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.

Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map

Procedia PDF Downloads 432
27974 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 81
27973 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
27972 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
27971 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 123
27970 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 136
27969 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 57
27968 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade

Procedia PDF Downloads 448
27967 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 352
27966 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 23
27965 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 432
27964 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
27963 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 111
27962 Implementation of CNV-CH Algorithm Using Map-Reduce Approach

Authors: Aishik Deb, Rituparna Sinha

Abstract:

We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.

Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing

Procedia PDF Downloads 136
27961 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform

Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal

Abstract:

This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.

Keywords: improvement, brain, matlab, markers, boundaries

Procedia PDF Downloads 516
27960 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 452
27959 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method

Procedia PDF Downloads 512
27958 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
27957 Enhancing the Pricing Expertise of an Online Distribution Channel

Authors: Luis N. Pereira, Marco P. Carrasco

Abstract:

Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.

Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics

Procedia PDF Downloads 234
27956 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 77
27955 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
27954 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 6
27953 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 406
27952 Counting People Utilizing Space-Time Imagery

Authors: Ahmed Elmarhomy, K. Terada

Abstract:

An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified.

Keywords: counting people, measurement line, space-time image, segmentation, template matching

Procedia PDF Downloads 452
27951 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means

Procedia PDF Downloads 291