Search results for: rank -principal certificate
1290 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT
Procedia PDF Downloads 4101289 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6381288 Assessment of Educational Service Quality at Master's Level in an Iranian University Using Based on HEdPERF Model
Authors: Faranak Omidian
Abstract:
The aim of this research was to examine the quality of education service at master's level in the Islamic Azad University of Dezful. In terms of objective, this is an applied research and in regard to methodology, it is a descriptive analytical research. The statistical population included all students of master's degree in the Islamic Azad University of Dezful. The sample size was determined using stratified random sampling method in different fields of study. The research questionnaire is the translated version of standardized Abdullah's HEdPERF 41-item scale which is based on a 5-point Likert scale. In order to determine the validity, the translated questionnaire was given to the professors of educational sciences. The correlation among all questions has been regarded at a value of 0.644. The results showed that the quality of educational service at master's level in this university, based on chi-square goodness of fit test, was equal to 73.36 and its degree of freedom was 2 at a significant level of 0.001, indicating the low desirability of the services. According to Friedman test, academic responsiveness has been reported to be in a higher status than other dimensions with an average rank of 3.94 while accessibility, with an average rank of 2.15, has been in the lowest status from master's students' viewpoint.Keywords: educational service quality, master's level, Iranian university
Procedia PDF Downloads 2801287 Risk Management in Islamic Micro Finance Credit System for Poverty Alleviation from Qualitative Perspective
Authors: Liyu Adhi Kasari Sulung
Abstract:
Poverty has been a major problem in Indonesia. Islamic micro finance (IMF) named Baitul Maal Wat Tamwil (Bmt) plays a prominent role to eradicate this. Indonesia as the biggest muslim country has many successful applied products such as worldwide adopt group-based lending approach, flexible financing for farmers, and gold pawning. The Problems related to these models are operation risk management and internal control system (ICS). A proper ICS will help an organization in preventing the occurrence of bad financing through detecting error and irregularities in its operation. This study aims to seek a proper risk management scheme of credit system in Bmt and internal control system’s rank for every stage. Risk management variables are obtained at the first In-Depth Interview (IDI) and Focus Group Discussion (FGD) with Shariah supervisory boards, boards of directors, and operational managers. Survey was conducted covering nationwide data; West Java, South Sulawesi, and West Nusa Tenggara. Moreover, Content analysis is employed to build the relationship among these variables. Research Findings shows that risk management Characteristics in Indonesia involves ex ante, credit process, and ex post strategies to deal with risk in credit system. Ex-ante control consists of Shariah compliance, survey, group leader reference, and islamic forming orientation. Then, credit process involves saving, collateral, joint liability, loan repayment, and credit installment controlling. Finally, ex-post control includes shariah evaluation, credit evaluation, grace period and low installment provisions. In addition, internal control order sort three stages by its priority; Credit process as first rank, then ex-post control as second, and ex ante control as the last rank.Keywords: internal control system, islamic micro finance, poverty, risk management
Procedia PDF Downloads 4071286 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu
Authors: Kaleeswari R. K., Seevagan L .
Abstract:
Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.Keywords: soil quality index, soil attributes, soil mapping, and rice soil
Procedia PDF Downloads 861285 A Proposal for an Excessivist Social Welfare Ordering
Authors: V. De Sandi
Abstract:
In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering
Procedia PDF Downloads 631284 Professional Management on Ecotourism and Conservation to Ensure the Future of Komodo National Park
Authors: Daningsih Sulaeman, Achmad Sjarmidi, Djoko T. Iskandar
Abstract:
Komodo National Park can be associated with the implementation of ecotourism program. The result of Principal Components Analysis is synthesized, tested, and compared to the basic concept of ecotourism with some field adjustments. Principal aspects of professional management should involve ecotourism and wildlife welfare. The awareness should be focused on the future of the Natural Park as 7th Wonder Natural Heritage and its wildlife components, free from human wastes and beneficial to wildlife and local people. According to perceptions and expectations of visitors from various results of tourism programs, the visitor’s perceptions showed that the tourism management in Komodo National Park should pay more attention to visitor's satisfaction and expectation and gives positive impact directly to the ecosystem sustainability, local community and transparency to the conservation program.Keywords: 7th wonders of nature, ecotourism, Komodo dragon, visitor’s perceptions, wildlife management
Procedia PDF Downloads 2021283 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 1441282 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows
Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan
Abstract:
Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.Keywords: CVRPTW, optimal route, depot, tabu search algorithm
Procedia PDF Downloads 1361281 Screening Methodology for Seismic Risk Assessment of Aging Structures in Oil and Gas Plants
Authors: Mohammad Nazri Mustafa, Pedram Hatami Abdullah, M. Fakhrur Razi Ahmad Faizul
Abstract:
With the issuance of Malaysian National Annex 2017 as a part of MS EN 1998-1:2015, the seismic mapping of Malaysian Peninsular including Sabah and Sarawak has undergone some changes in terms of the Peak Ground Acceleration (PGA) value. The revision to the PGA has raised a concern on the safety of oil and gas onshore structures as these structures were not designed to accommodate the new PGA values which are much higher than the previous values used in the original design. In view of the high numbers of structures and buildings to be re-assessed, a risk assessment methodology has been developed to prioritize and rank the assets in terms of their criticality against the new seismic loading. To-date such risk assessment method for oil and gas onshore structures is lacking, and it is the main intention of this technical paper to share the risk assessment methodology and risk elements scoring finalized via Delphi Method. The finalized methodology and the values used to rank the risk elements have been established based on years of relevant experience on the subject matter and based on a series of rigorous discussions with professionals in the industry. The risk scoring is mapped against the risk matrix (i.e., the LOF versus COF) and hence, the overall risk for the assets can be obtained. The overall risk can be used to prioritize and optimize integrity assessment, repair and strengthening work against the new seismic mapping of the country.Keywords: methodology, PGA, risk, seismic
Procedia PDF Downloads 1511280 Ranking of Employability Skills from Employers' Perspective against Outcome Based Education Criteria for Engineering Graduates: A Case Study of Pakistan
Authors: Mohammad Pervez Mughal, Huma Shazadi
Abstract:
Pakistan became a full signatory to the Washington Accord in June 2017, with the expectation that undergraduate engineering programs will be recognized by other signatory countries. Pakistan's accrediting body, the Pakistan Engineering Council (PEC), has distributed 12 Program Learning Outcomes (PLOs) under Outcome Based Education (OBE) criteria for engineering institutions in Pakistan to follow. However, no research has been conducted to rank graduates' employability skills in relation to these PLOs from the perspective of potential employers. The current work makes a concerted effort to rank the skills required by employers, which include both technical and non-technical skill sets. A survey was conducted throughout Pakistan to validate the relative importance of employability skills. 198 HR personnel, 1554 graduating students, 1540 alumni, and 267 faculty members provided valid responses, which were analyzed. According to the findings, ethics, communication, and lifelong learning are the most important attributes of engineering graduates' employability in the eyes of employers. Graduating students, alumni, and faculty's differential prospects are also presented and compared to employers' perspectives.Keywords: employability skills, employers' perspective, outcome-based education, engineering graduates, Pakistan
Procedia PDF Downloads 1171279 Monte Carlo and Biophysics Analysis in a Criminal Trial
Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano
Abstract:
In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion
Procedia PDF Downloads 1301278 Spatial Analysis of Flood Vulnerability in Highly Urbanized Area: A Case Study in Taipei City
Authors: Liang Weichien
Abstract:
Without adequate information and mitigation plan for natural disaster, the risk to urban populated areas will increase in the future as populations grow, especially in Taiwan. Taiwan is recognized as the world's high-risk areas, where an average of 5.7 times of floods occur per year should seek to strengthen coherence and consensus in how cities can plan for flood and climate change. Therefore, this study aims at understanding the vulnerability to flooding in Taipei city, Taiwan, by creating indicators and calculating the vulnerability of each study units. The indicators were grouped into sensitivity and adaptive capacity based on the definition of vulnerability of Intergovernmental Panel on Climate Change. The indicators were weighted by using Principal Component Analysis. However, current researches were based on the assumption that the composition and influence of the indicators were the same in different areas. This disregarded spatial correlation that might result in inaccurate explanation on local vulnerability. The study used Geographically Weighted Principal Component Analysis by adding geographic weighting matrix as weighting to get the different main flood impact characteristic in different areas. Cross Validation Method and Akaike Information Criterion were used to decide bandwidth and Gaussian Pattern as the bandwidth weight scheme. The ultimate outcome can be used for the reduction of damage potential by integrating the outputs into local mitigation plan and urban planning.Keywords: flood vulnerability, geographically weighted principal components analysis, GWPCA, highly urbanized area, spatial correlation
Procedia PDF Downloads 2861277 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress
Procedia PDF Downloads 951276 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)
Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad
Abstract:
The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments
Procedia PDF Downloads 951275 The Effect of Teachers' Personal Values on the Perceptions of the Effective Principal and Student in School
Authors: Alexander Zibenberg, Rima’a Da’As
Abstract:
According to the author’s knowledge, individuals are naturally inclined to classify people as leaders and followers. Individuals utilize cognitive structures or prototypes specifying the traits and abilities that characterize the effective leader (implicit leadership theories) and effective follower in an organization (implicit followership theories). Thus, the present study offers insights into understanding how teachers' personal values (self-enhancement and self-transcendence) explain the preference for styles of effective leader (i.e., principal) and assumptions about the traits and behaviors that characterize effective followers (i.e., student). Beyond the direct effect on perceptions of effective types of leader and follower, the present study argues that values may also interact with organizational and personal contexts in influencing perceptions. Thus authors suggest that teachers' managerial position may moderate the relationships between personal values and perception of the effective leader and follower. Specifically, two key questions are addressed in the present research: (1) Is there a relationship between personal values and perceptions of the effective leader and effective follower? and (2) Are these relationships stable or could they change across different contexts? Two hundred fifty-five Israeli teachers participated in this study, completing questionnaires – about the effective student and effective principal. Results of structural equations modeling (SEM) with maximum likelihood estimation showed: first: the model fit the data well. Second: researchers found a positive relationship between self-enhancement and anti-prototype of the effective principal and anti-prototype of the effective student. The relationship between self-transcendence value and both perceptions were found significant as well. Self-transcendence positively related to the way the teacher perceives the prototype of the effective principal and effective student. Besides, authors found that teachers' managerial position moderates these relationships. The article contributes to the literature both on perceptions and on personal values. Although several earlier studies explored issues of implicit leadership theories and implicit followership theories, personality characteristics (values) have garnered less attention in this matter. This study shows that personal values which are deeply rooted, abstract motivations that guide justify or explain attitudes, norms, opinions and actions explain differences in perception of the effective leader and follower. The results advance the theoretical understanding of the relationship between personal values and individuals’ perceptions in organizations. An additional contribution of this study is the application of the teacher's managerial position to explain a potential boundary condition of the translation of personal values into outcomes. The findings suggest that through the management process in the organization, teachers acquire knowledge and skills which augment their ability (beyond their personal values) to predict perceptions of ideal types of principal and student. The study elucidates the unique role of personal values in understanding an organizational thinking in organization. It seems that personal values might explain the differences in individual preferences of the organizational paradigm (mechanistic vs organic).Keywords: implicit leadership theories, implicit followership theories, organizational paradigms, personal values
Procedia PDF Downloads 1571274 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 811273 Research Attitude: Its Factor Structure and Determinants in the Graduate Level
Authors: Janet Lynn S. Montemayor
Abstract:
Dropping survivability and rising drop-out rate in the graduate school is attributed to the demands that come along with research-related requirements. Graduate students tend to withdraw from their studies when confronted with such requirements. This act of succumbing to the challenge is primarily due to a negative mindset. An understanding of students’ view towards research is essential for teachers in facilitating research activities in the graduate school. This study aimed to develop a tool that accurately measures attitude towards research. Psychometric properties of the Research Attitude Inventory (RAIn) was assessed. A pool of items (k=50) was initially constructed and was administered to a development sample composed of Masters and Doctorate degree students (n=159). Results show that the RAIn is a reliable measure of research attitude (k=41, αmax = 0.894). Principal component analysis using orthogonal rotation with Kaiser normalization identified four underlying factors of research attitude, namely predisposition, purpose, perspective, and preparation. Research attitude among the respondents was analyzed using this measure.Keywords: graduate education, principal component analysis, research attitude, scale development
Procedia PDF Downloads 1911272 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes
Authors: Yaxian Chen, Yeonhee Park
Abstract:
Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome
Procedia PDF Downloads 641271 On Lie Groupoids, Bundles, and Their Categories
Authors: P. G. Romeo
Abstract:
A Lie group is a highly sophisticated structure which is a smooth manifold whose underlying set of elements is equipped with the structure of a group such that the group multiplication and inverse-assigning functions are smooth. This structure was introduced by the Norwegian mathematician So- phus Lie who founded the theory of continuous groups. The Lie groups are well developed and have wide applications in areas including Mathematical Physics. There are several advances and generalizations for Lie groups and Lie groupoids is one such which is termed as a "many-object generalization" of Lie groups. A groupoid is a category whose morphisms are all invertible, obviously, every group is a groupoid but not conversely. Definition 1. A Lie groupoid G ⇒ M is a groupoid G on a base M together with smooth structures on G and M such that the maps α, β: G → M are surjective submertions, the object inclusion map x '→ 1x, M → G is smooth, and the partial multiplication G ∗ G → G is smooth. A bundle is a triple (E, p, B) where E, B are topological spaces p: E → B is a map. Space B is called the base space and space E is called total space and map p is the projection of the bundle. For each b ∈ B, the space p−1(b) is called the fibre of the bundle over b ∈ B. Intuitively a bundle is regarded as a union of fibres p−1(b) for b ∈ B parametrized by B and ’glued together’ by the topology of the space E. A cross-section of a bundle (E, p, B) is a map s: B → E such that ps = 1B. Example 1. Given any space B, a product bundle over B with fibre F is (B × F, p, B) where p is the projection on the first factor. Definition 2. A principal bundle P (M, G, π) consists of a manifold P, a Lie group G, and a free right action of G on P denoted (u, g) '→ ug, such that the orbits of the action coincide with the fibres of the surjective submersion π : P → M, and such that M is covered by the domains of local sections σ: U → P, U ⊆ M, of π. Definition 3. A Lie group bundle, or LGB, is a smooth fibre bundle (K, q, M ) in which each fibre (Km = q−1(m), and the fibre type G, has a Lie group structure, and for which there is an atlas {ψi: Ui × G → KUi } such that each {ψi,m : G → Km}, is an isomorphism of Lie groups. A morphism of LGB from (K, q, M ) to (K′, q′, M′) is a morphism (F, f ) of fibre bundles such that each Fm: Km → K′ is a morphism of Lie groups. In this paper, we will be discussing the Lie groupoid bundles. Here it is seen that to a Lie groupoid Ω on base B there is associated a collection of principal bundles Ωx(B, Ωx), all of which are mutually isomorphic and conversely, associated to any principal bundle P (B, G, p) there is a groupoid called the Ehresmann groupoid which is easily seen to be Lie. Further, some interesting properties of the category of Lie groupoids and bundles will be explored.Keywords: groupoid, lie group, lie groupoid, bundle
Procedia PDF Downloads 771270 Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course
Authors: Peter Akayuure
Abstract:
Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students.Keywords: geometric thinking, van Hiele’s, UEW learning management system, undergraduate geometry
Procedia PDF Downloads 1281269 Measuring Principal and Teacher Cultural Competency: A Need Assessment of Three Proximate PreK-5 Schools
Authors: Teresa Caswell
Abstract:
Throughout the United States and within a myriad of demographic contexts, students of color experience the results of systemic inequities as an academic outcome. These disparities continue despite the increased resources provided to students and ongoing instruction-focused professional learning received by teachers. The researcher postulated that lower levels of educator cultural competency are an underlying factor of why resource and instructional interventions are less effective than desired. Before implementing any type of intervention, however, cultural competency needed to be confirmed as a factor in schools demonstrating academic disparities between racial subgroups. A needs assessment was designed to measure levels of individual beliefs, including cultural competency, in both principals and teachers at three neighboring schools verified to have academic disparities. The resulting mixed method study utilized the Optimal Theory Applied to Identity Development (OTAID) model to measure cultural competency quantitatively, through self-identity inventory survey items, with teachers and qualitatively, through one-on-one interviews, with each school’s principal. A joint display was utilized to see combined data within and across school contexts. Each school was confirmed to have misalignments between principal and teacher levels of cultural competency beliefs while also indicating that a number of participants in the self-identity inventory survey may have intentionally skipped items referencing the term oppression. Additional use of the OTAID model and self-identity inventory in future research and across contexts is needed to determine transferability and dependability as cultural competency measures.Keywords: cultural competency, identity development, mixed-method analysis, needs assessment
Procedia PDF Downloads 1521268 Authentic Engagement for Institutional Leadership: Implications for Educational Policy and Planning
Authors: Simeon Adebayo Oladipo
Abstract:
Institutional administrators are currently facing pressure and challenges in their daily operations. Reasons for this may include the increasing multiplicity, uncertainty and tension that permeate institutional leadership. Authentic engagement for institutional leadership is premised on the ethical foundation that the leaders in the schools are engaged. The institutional effectiveness is dependent on the relationship that exists between the leaders and employees in the workplace. Leader’s self-awareness, relational transparency, emotional control, strong moral code and accountability have a positive influence on authentic engagement which variably determines leadership effectiveness. This study therefore examined the role of authentic engagement in effective school leadership; explored the interrelationship of authentic engagement indices in school leadership. The study adopted the descriptive research of the survey type using a quantitative method to gather data through a questionnaire among school leaders in Lagos State Tertiary Institutions. The population for the study consisted of all Heads of Departments, Deans and Principal Officers in Lagos State Tertiary Institutions. A sample size of 255 Heads of Departments, Deans and Principal Officers participated in the study. The data gathered were analyzed using descriptive and inferential statistical tools. The findings indicated that authentic engagement plays a crucial role in increasing leadership effectiveness amongst Heads of Departments, Deans and Principal Officers. The study recommended among others that there is a need for effective measures to enhance authentic engagement of institutional leadership practices through relevant educational support systems and effective quality control.Keywords: authentic engagement, self-awareness, relational transparency, emotional control
Procedia PDF Downloads 691267 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis
Authors: H. Jung, N. Kim, B. Kang, J. Choe
Abstract:
History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.Keywords: history matching, principal component analysis, reservoir modelling, support vector machine
Procedia PDF Downloads 1601266 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors
Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui
Abstract:
Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.Keywords: data-driven method, process control, anomaly detection, dimensionality reduction
Procedia PDF Downloads 2991265 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms
Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma
Abstract:
Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.Keywords: image fusion, pyramid, wavelets, principal component analysis
Procedia PDF Downloads 2831264 A Finite Element Method Simulation for Rocket Motor Material Selection
Authors: T. Kritsana, P. Sawitri, P. Teeratas
Abstract:
This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.Keywords: rocket motor case, finite element method, principal stress, simulation
Procedia PDF Downloads 4491263 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1791262 Enhancing Cloud Computing with Security Trust Model
Authors: John Ayoade
Abstract:
Cloud computing is a model that enables the delivery of on-demand computing resources such as networks, servers, storage, applications and services over the internet. Cloud Computing is a relatively growing concept that presents a good number of benefits for its users; however, it also raises some security challenges which may slow down its use. In this paper, we identify some of those security issues that can serve as barriers to realizing the full benefits that cloud computing can bring. One of the key security problems is security trust. A security trust model is proposed that can enhance the confidence that users need to fully trust the use of public and mobile cloud computing and maximize the potential benefits that they offer.Keywords: cloud computing, trust, security, certificate authority, PKI
Procedia PDF Downloads 4841261 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China
Authors: Yan-Shen Yang, Bai-Chen Xie
Abstract:
Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model
Procedia PDF Downloads 147