Search results for: inertia rollers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 146

Search results for: inertia rollers

26 The Relationship between Central Bank Independence and Inflation: Evidence from Africa

Authors: R. Bhattu Babajee, Marie Sandrine Estelle Benoit

Abstract:

The past decades have witnessed a considerable institutional shift towards Central Bank Independence across economies of the world. The motivation behind such a change is the acceptance that increased central bank autonomy has the power of alleviating inflation bias. Hence, studying whether Central Bank Independence acts as a significant factor behind the price stability in the African economies or whether this macroeconomic aim in these countries result from other economic, political or social factors is a pertinent issue. The main research objective of this paper is to assess the relationship between central bank autonomy and inflation in African economies where inflation has proved to be a serious problem. In this optic, we shall measure the degree of CBI in Africa by computing the turnover rates of central banks governors thereby studying whether decisions made by African central banks are affected by external forces. The purpose of this study is to investigate empirically the association between Central Bank Independence (CBI) and inflation for 10 African economies over a period of 17 years, from 1995 to 2012. The sample includes Botswana, Egypt, Ghana, Kenya, Madagascar, Mauritius, Mozambique, Nigeria, South Africa, and Uganda. In contrast to empirical research, we have not been using the usual static panel model for it is associated with potential mis specification arising from the absence of dynamics. To this issue a dynamic panel data model which integrates several control variables has been used. Firstly, the analysis includes dynamic terms to explain the tenacity of inflation. Given the confirmation of inflation inertia, that is very likely in African countries there exists the need for including lagged inflation in the empirical model. Secondly, due to known reverse causality between Central Bank Independence and inflation, the system generalized method of moments (GMM) is employed. With GMM estimators, the presence of unknown forms of heteroskedasticity is admissible as well as auto correlation in the error term. Thirdly, control variables have been used to enhance the efficiency of the model. The main finding of this paper is that central bank independence is negatively associated with inflation even after including control variables.

Keywords: central bank independence, inflation, macroeconomic variables, price stability

Procedia PDF Downloads 361
25 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 197
24 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 148
23 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 56
22 Define Immersive Need Level for Optimal Adoption of Virtual Words with BIM Methodology

Authors: Simone Balin, Cecilia M. Bolognesi, Paolo Borin

Abstract:

In the construction industry, there is a large amount of data and interconnected information. To manage this information effectively, a transition to the immersive digitization of information processes is required. This transition is important to improve knowledge circulation, product quality, production sustainability and user satisfaction. However, there is currently a lack of a common definition of immersion in the construction industry, leading to misunderstandings and limiting the use of advanced immersive technologies. Furthermore, the lack of guidelines and a common vocabulary causes interested actors to abandon the virtual world after the first collaborative steps. This research aims to define the optimal use of immersive technologies in the AEC sector, particularly for collaborative processes based on the BIM methodology. Additionally, the research focuses on creating classes and levels to structure and define guidelines and a vocabulary for the use of the " Immersive Need Level." This concept, matured by recent technological advancements, aims to enable a broader application of state-of-the-art immersive technologies, avoiding misunderstandings, redundancies, or paradoxes. While the concept of "Informational Need Level" has been well clarified with the recent UNI EN 17412-1:2021 standard, when it comes to immersion, current regulations and literature only provide some hints about the technology and related equipment, leaving the procedural approach and the user's free interpretation completely unexplored. Therefore, once the necessary knowledge and information are acquired (Informational Need Level), it is possible to transition to an Immersive Need Level that involves the practical application of the acquired knowledge, exploring scenarios and solutions in a more thorough and detailed manner, with user involvement, via different immersion scales, in the design, construction or management process of a building or infrastructure. The need for information constitutes the basis for acquiring relevant knowledge and information, while the immersive need can manifest itself later, once a solid information base has been solidified, using the senses and developing immersive awareness. This new approach could solve the problem of inertia among AEC industry players in adopting and experimenting with new immersive technologies, expanding collaborative iterations and the range of available options.

Keywords: AECindustry, immersive technology (IMT), virtual reality, augmented reality, building information modeling (BIM), decision making, collaborative process, information need level, immersive level of need

Procedia PDF Downloads 89
21 A Parametric Investigation into the Free Vibration and Flutter Characteristics of High Aspect Ratio Aircraft Wings Using Polynomial Distributions of Stiffness and Mass Properties

Authors: Ranjan Banerjee, W. D. Gunawardana

Abstract:

The free vibration and flutter analysis plays a major part in aircraft design which is indeed, a mandatory requirement. In particular, high aspect ratio transport airliner wings are prone to free vibration and flutter problems that must be addressed during the design process as demanded by the airworthiness authorities. The purpose of this paper is to carry out a detailed free vibration and flutter analysis for a wide range of high aspect ratio aircraft wings and generate design curves to provide useful visions and understandings of aircraft design from an aeroelastic perspective. In the initial stage of the investigation, the bending and torsional stiffnesses of a number of transport aircraft wings are looked at and critically examined to see whether it is possible to express the stiffness distributions in polynomial form, but in a sufficiently accurate manner. A similar attempt is made for mass and mass moment of inertia distributions of the wing. Once the choice of stiffness and mass distributions in polynomial form is made, the high aspect ratio wing is idealised by a series of bending-torsion coupled beams from a structural standpoint. Then the dynamic stiffness method is applied to compute the natural frequencies and mode shape of the wing. Next the wing is idealised aerodynamically and to this end, unsteady aerodynamic of Theodorsen type is employed to represent the harmonically oscillating wing. Following this step, a normal mode method through the use of generalised coordinates is applied to formulate the flutter problem. In essence, the generalised mass, stiffness and aerodynamic matrices are combined to obtain the flutter matrix which is subsequently solved in the complex domain to determine the flutter speed and flutter frequency. In the final stage of the investigation, an exhaustive parametric study is carried out by varying significant wing parameters to generate design curves which help to predict the free vibration and flutter behaviour of high aspect ratio transport aircraft wings in a generic manner. It is in the aeroelastic context of aircraft design where the results are expected to be most useful.

Keywords: high-aspect ratio wing, flutter, dynamic stiffness method, free vibration, aeroelasticity

Procedia PDF Downloads 279
20 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 196
19 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 58
18 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter

Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh

Abstract:

Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.

Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential

Procedia PDF Downloads 820
17 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: greenhouse radiative force, greenhouse air temperature, greenhouse thermodynamics, greenhouse historical, greenhouse radiative force on ice, greenhouse radiative force on plants, greenhouse radiative force in air

Procedia PDF Downloads 99
16 Solutions of Thickening the Sludge from the Wastewater Treatment by a Rotor with Bars

Authors: Victorita Radulescu

Abstract:

Introduction: The sewage treatment plants, in the second stage, are formed by tanks having as main purpose the formation of the suspensions with high possible solid concentration values. The paper presents a solution to produce a rapid concentration of the slurry and sludge, having as main purpose the minimization as much as possible the size of the tanks. The solution is based on a rotor with bars, tested into two different areas of industrial activity: the remediation of the wastewater from the oil industry and, in the last year, into the mining industry. Basic Methods: It was designed, realized and tested a thickening system with vertical bars that manages to reduce sludge moisture content from 94% to 87%. The design was based on the hypothesis that the streamlines of the vortices detached from the rotor with vertical bars accelerate, under certain conditions, the sludge thickening. It is moved at the lateral sides, and in time, it became sediment. The formed vortices with the vertical axis in the viscous fluid, under the action of the lift, drag, weight, and inertia forces participate at a rapid aggregation of the particles thus accelerating the sludge concentration. Appears an interdependence between the Re number attached to the flow with vortex induced by the vertical bars and the size of the hydraulic compaction phenomenon, resulting from an accelerated process of sedimentation, therefore, a sludge thickening depending on the physic-chemical characteristics of the resulting sludge is projected the rotor's dimensions. Major findings/ Results: Based on the experimental measurements was performed the numerical simulation of the hydraulic rotor, as to assure the necessary vortices. The experimental measurements were performed to determine the optimal height and the density of the bars for the sludge thickening system, to assure the tanks dimensions as small as possible. The time thickening/settling was reduced by 24% compared to the conventional used systems. In the present, the thickeners intend to decrease the intermediate stage of water treatment, using primary and secondary settling; but they assume a quite long time, the order of 10-15 hours. By using this system, there are no intermediary steps; the thickening is done automatically when are created the vortices. Conclusions: The experimental tests were carried out in the wastewater treatment plant of the Refinery of oil from Brazi, near the city Ploiesti. The results prove its efficiency in reducing the time for compacting the sludge and the smaller humidity of the evacuated sediments. The utilization of this equipment is now extended and it is tested the mining industry, with significant results, in Lupeni mine, from the Jiu Valley.

Keywords: experimental tests, hydrodynamic modeling, rotor efficiency, wastewater treatment

Procedia PDF Downloads 116
15 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 143
14 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 156
13 The Spatial Circuit of the Audiovisual Industry in Argentina: From Monopoly and Geographic Concentration to New Regionalization and Democratization Policies

Authors: André Pasti

Abstract:

Historically, the communication sector in Argentina is characterized by intense monopolization and geographical concentration in the city of Buenos Aires. In 2000, the four major media conglomerates in operation – Clarín, Telefónica, America and Hadad – controlled 84% of the national media market. By 2009, new policies were implemented as a result of civil society organizations demands. Legally, a new regulatory framework was approved: the law 26,522 of Audiovisual Communications Services. Supposedly, these policies intend to create new conditions for the development of the audiovisual economy in the territory of Argentina. The regionalization of audiovisual production and the democratization of channels and access to media were among the priorities. This paper analyses the main changes and continuities in the organization of the spatial circuit of the audiovisual industry in Argentina provoked by these new policies. These new policies aim at increasing the diversity of audiovisual producers and promoting regional audiovisual industries. For this purpose, a national program for the development of audiovisual centers within the country was created. This program fostered a federalized production network, based on nine audiovisual regions and 40 nodes. Each node has created technical, financial and organizational conditions to gather different actors in audiovisual production – such as SMEs, social movements and local associations. The expansion of access to technical networks was also a concern of other policies, such as ‘Argentina connected’, whose objective was to expand access to broadband Internet. The Open Digital Television network also received considerable investments. Furthermore, measures have been carried out in order to impose limits on the concentration of ownership as well as to eliminate the oligopolies and to ensure more competition in the sector. These actions intended to force a divide of the media conglomerates into smaller groups. Nevertheless, the corporations that compose these conglomerates resist strongly, making full use of their economic and judiciary power. Indeed, the absence of effective impact of such measures can be testified by the fact that the audiovisual industry remains strongly concentrated in Argentina. Overall, these new policies were designed properly to decentralize audiovisual production and expand the regional diversity of the audiovisual industry. However, the effective transformation of the organization of the audiovisual circuit in the territory faced several resistances. This can be explained firstly and foremost by the ideological and economic power of the media conglomerates. In the second place, there is an inherited inertia from the unequal distribution of the objects needed for the audiovisual production and consumption. Lastly, the resistance also relies on financial needs and in the excessive dependence of the state for the promotion of regional audiovisual production.

Keywords: Argentina, audiovisual industry, communication policies, geographic concentration, regionalization, spatial circuit

Procedia PDF Downloads 212
12 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor

Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso

Abstract:

The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.

Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber

Procedia PDF Downloads 210
11 Identifying the Barriers to Institutionalizing a One Health Concept in Responding to Zoonotic Diseases in South Asia

Authors: Rojan Dahal

Abstract:

One Health refers to a collaborative effort between multiple disciplines - locally, nationally, and globally - to attain optimal health. Although there were unprecedented intersectoral alliances between the animal and human health sectors during the avian influenza outbreak, there are different views and perceptions concerning institutionalizing One Health in South Asia. It is likely a structural barrier between the relevant professionals working in different entities or ministries when it comes to collaborating on One Health actions regarding zoonotic diseases. Politicians and the public will likely need to invest large amounts of money, demonstrate political will, and understand how One Health works to overcome these barriers. One Health might be hard to invest in South Asian countries, where the benefits are based primarily on models and projections and where numerous issues related to development and health need urgent attention. The other potential barrier to enabling the One Health concept in responding to zoonotic diseases is a failure to represent One Health in zoonotic disease control and prevention measures in the national health policy, which is a critical component of institutionalizing the One Health concept. One Health cannot be institutionalized without acknowledging the linkages between animal, human, and environmental sectors in dealing with zoonotic diseases. Efforts have been made in the past to prepare a preparedness plan for One Health implementation, but little has been done to establish a policy environment to institutionalize One Health. It is often assumed that health policy refers specifically to medical care issues and health care services. When drafting, reviewing, and redrafting the policy, it is important to engage a wide range of stakeholders. One Health institutionalization may also be hindered by the interplay between One Health professionals and bureaucratic inertia in defining the priorities of diseases due to competing interests on limited budgets. There is a possibility that policymakers do not recognize the importance of veterinary professionals in preventing human diseases originating in animals. Compared to veterinary medicine, the human health sector has produced most of the investment and research outputs related to zoonotic diseases. The public health profession may consider itself superior to the veterinary profession. Zoonotic diseases might not be recognized as threats to human health, impeding integrated policies. The effort of One Health institutionalization remained only among the donor agencies and multi-sectoral organizations. There is a need for strong political will and state capacity to overcome the existing institutional, financial, and professional barriers for its effective implementation. There is a need to assess the structural challenges, policy challenges, and the attitude of the professional working in the multiple disciplines related to One Health. Limited research has been conducted to identify the reasons behind the barriers to institutionalizing the One Health concept in South Asia. Institutionalizing One Health in responding to zoonotic diseases breaks down silos and integrates animals, humans, and the environment.

Keywords: one health, institutionalization, South Asia, institutionalizations

Procedia PDF Downloads 92
10 The Institutional Change Occurring in the Chinese Sport Sector: A Case Study on the Chinese Football Association Reform

Authors: Qi Peng

Abstract:

The Chinese sport sector is currently undergoing a dramatic institutional change. A sport system that was heavily dominated by the government is starting to shift towards one that is driven by the market. During the past sixty years, the Chinese Football Association (CFA), although ostensibly a ‘non-governmental organization’, has been in fact operated under the close supervision and control of the government. The double-identity of CFA has taken most of the blame for the poor performance of the Chinese football team, especially the men’s team. In 2015, a policy initiated by the Chinese government introduced a potentially radical change to the institutional structure of CFA by delegating the power of government agency – the General Administration of Sport of China - to the organization (CFA) itself. Against such background, an overarching research question was brought up- will an organization remained institutionalized within the system change in response to the external (policy) jolt? To answer this question, three principal data collection methods were employed: document review, participant observation and semi-structured interviews. Document review provides the mapping of the structural and cultural framework in which the CFA functions during the change process. The author have had the chance to interact closely with the organization as participant observer in the organization for a period of time, long enough to collect the data, but never too long to get biased view of the situation. This stage enables the author to gain an in-depth understanding of how CFA managed to restructure the governance and legitimacy. Conducting semi-structured interviews with staff within the CFA and from staff within selected stakeholders of CFA also provided a crucial step to gain an insight into the factors for change as well as the implications of the change. A wide range of interviewees that have been and to be interviewed include: CFA members (senior officials and staff); local football associations members; senior Chinese Super League football club managers; CFA Super League Co., LTD (senior officials and staff); CSL broadcasters; Chinese Olympic Committee members. The preliminary research data shows that the CFA is currently undergoing two levels of change: although the settings of CFA has been gradually restructured (organizational framework), the organizational values and beliefs remain almost the same as the CFA before the reform. This means that the plan of shifting from a governmental agency to an autonomous association is an going process, and that organizational core beliefs and values are more difficult to change than its structural framework. This is due to the inertia of the organizational history and the effect of institutionalization. The change of Chinese Football Association is looked at as a pioneering sport organization in China to undertake the “decoupling” road. It is believed that many other sport organizations, especially sport governing bodies will follow the step of CFA in the near future. Therefore, the experience of CFA change is worthy of studying.

Keywords: Chinese Football Association, Organizational Change, Organizational Culture, Structural Framework

Procedia PDF Downloads 338
9 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.

Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training

Procedia PDF Downloads 103
8 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 326
7 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 168
6 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 348
5 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model

Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero

Abstract:

Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.

Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods

Procedia PDF Downloads 11
4 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 167
3 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves

Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare

Abstract:

The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.

Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve

Procedia PDF Downloads 35
2 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 72
1 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 281