Search results for: hidden geothermal
464 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface
Authors: Srijanani Anurag Prasad
Abstract:
The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprises a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.Keywords: fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion
Procedia PDF Downloads 101463 A Survey of Feature-Based Steganalysis for JPEG Images
Authors: Syeda Mainaaz Unnisa, Deepa Suresh
Abstract:
Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography
Procedia PDF Downloads 217462 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 313461 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition
Procedia PDF Downloads 481460 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 337459 An Exploratory Study on Experiences of Menarche and Menstruation among Adolescent Girls
Authors: Bhawna Devi, Girishwar Misra, Rajni Sahni
Abstract:
Menarche and menstruation is a nearly universal experience in adolescent girls’ lives, yet based on several observations it has been found that it is rarely explicitly talked about, and remains poorly understood. By menarche, girls are likely to have been influenced not only by cultural stereotypes about menstruation, but also by information acquired through significant others. Their own expectations about menstruation are likely to influence their reports of menarcheal experience. The aim of this study is to examine how girls construct meaning around menarche and menstruation in social interactions and specific contexts along with conceptualized experiences which is ‘owned’ by individual girls. Twenty adolescent girls from New Delhi (India), between the ages of 12 to 19 years (mean age = 15.1) participated in the study. Semi-structured interviews were conducted to capture the nuances of menarche and menstrual experiences of these twenty adolescent girls. Thematic analysis was used to analyze the data. From the detailed analysis of transcribed data main themes that emerged were- Menarche: A Trammeled Sky to Fly, Menarche as Flashbulb Memory, Hidden Secret: Shame and Fear, Hallmark of Womanhood, Menarche as Illness. Therefore, the finding unfolds that menarche and menstruation were largely constructed as embarrassing, shameful and something to be hidden, specifically within the school context and in general when they are outside of their home. Menstruation was also constructed as illness that programmed ‘feeling of weaknesses’ into them. The production and perpetuation of gender-related difference narratives was also evident. Implications for individuals, as well as for the subjugation of girls and women, are discussed, and it is argued that current negative representations of, and practices in relation to, menarche and menstruation need to be challenged.Keywords: embarrassment, gender-related difference, hidden secret, illness, menarche and menstruation
Procedia PDF Downloads 146458 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy
Authors: Sriram Kashyap Prasad, Ionut Florescu
Abstract:
This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning
Procedia PDF Downloads 151457 Robust Image Design Based Steganographic System
Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi
Abstract:
This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).Keywords: encryption, thresholding, differential predictive coding, four triangles operation
Procedia PDF Downloads 493456 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 125455 Hidden Populations and Women: New Political, Methodological and Ethical Challenges
Authors: Renée Fregosi
Abstract:
The contribution presently proposed will report on the beginnings of a Franco-Chilean study to be launched in 2015 by a multidisciplinary team of Renée Fregosi Political Science University Paris 3 / CECIEC, Norma Muñoz Public Policies University of Santiago of Chile, Jean-Daniel Lelievre, Medicine Paris 11 University, Marcelo WOLFF Medicine University of Chile, Cecilia Blatrix Political Science University Paris-Tech, Ernesto OTTONE, Political Science University of Chile, Paul DENY Medicine Paris 13 University, Rafael Bugueno Medicine Hospital Urgencia Pública of Santiago, Eduardo CARRASCO Political Science Paris 3 University. The problem of hidden populations challenges some criteria and concepts to re-examine: in particular the concept of target population, sampling methods to "snowball" and the cost-effectiveness criterion that shows the connection of political and scientific fields. Furthermore, if the pattern of homosexual transmission still makes up the highest percentage of the modes of infection with HIV, there is a continuous increase in the number of people infected through heterosexual sex, including women and persons aged 50 years and older. This group can be described as " unknown risk people." Access to these populations is a major challenge and raises methodological, ethical and political issues of prevention, particularly on the issue of screening. This paper proposes an inventory of these types of problems and their articulation, to define a new phase in the prevention against HIV refocused on women.Keywords: HIV testing, hidden populations, difficult to reach PLWHA, women, unknown risk people
Procedia PDF Downloads 523454 Voice Commands Recognition of Mentor Robot in Noisy Environment Using HTK
Authors: Khenfer-Koummich Fatma, Hendel Fatiha, Mesbahi Larbi
Abstract:
this paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a man-machine interface with a voice recognition system that allows the operator to tele-operate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands spoken in two languages: French and Arabic. The recognition rate obtained is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equal to 30 db, the Arabic speech recognition rate is 69% and 80% for French speech recognition rate. This can be explained by the ability of phonetic context of each speech when the noise is added.Keywords: voice command, HMM, TIMIT, noise, HTK, Arabic, speech recognition
Procedia PDF Downloads 383453 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate
Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra
Abstract:
Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.Keywords: convection, earth, geothermal energy, thermal comfort
Procedia PDF Downloads 73452 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.Keywords: ionic liquid, neural networks, VLE, dilute solution
Procedia PDF Downloads 301451 Hidden Stones When Implementing Artificial Intelligence Solutions in the Engineering, Procurement, and Construction Industry
Authors: Rimma Dzhusupova, Jan Bosch, Helena Holmström Olsson
Abstract:
Artificial Intelligence (AI) in the Engineering, Procurement, and Construction (EPC) industry has not yet a proven track record in large-scale projects. Since AI solutions for industrial applications became available only recently, deployment experience and lessons learned are still to be built up. Nevertheless, AI has become an attractive technology for organizations looking to automate repetitive tasks to reduce manual work. Meanwhile, the current AI market has started offering various solutions and services. The contribution of this research is that we explore in detail the challenges and obstacles faced in developing and deploying AI in a large-scale project in the EPC industry based on real-life use cases performed in an EPC company. Those identified challenges are not linked to a specific technology or a company's know-how and, therefore, are universal. The findings in this paper aim to provide feedback to academia to reduce the gap between research and practice experience. They also help reveal the hidden stones when implementing AI solutions in the industry.Keywords: artificial intelligence, machine learning, deep learning, innovation, engineering, procurement and construction industry, AI in the EPC industry
Procedia PDF Downloads 119450 Conflict and Hunger Revisit: Evidences from Global Surveys, 1989-2020
Authors: Manasse Elusma, Thung-Hong Lin, Chun-yin Lee
Abstract:
The relationship between hunger and war or conflict remains to be discussed. Do wars or conflicts cause hunger and food scarcity, or is the reverse relationship is true? As the world becomes more peaceful and wealthier, some countries are still suffered from hunger and food shortage. So, eradicating hunger calls for a more comprehensive understanding of the relationship between conflict and hunger. Several studies are carried out to detect the importance of conflict or war on food security. Most of these studies, however, perform only descriptive analysis and largely use food security indicators instead of the global hunger index. Few studies have employed cross-country panel data to explicitly analyze the association between conflict and chronic hunger, including hidden hunger. Herein, this study addresses this issue and the knowledge gap. We combine global datasets to build a new panel dataset including 143 countries from 1989 to 2020. This study examines the effect of conflict on hunger with fixed effect models, and the results show that the increase of conflict frequency deteriorates hunger. Peacebuilding efforts and war prevention initiative are required to eradicate global hunger.Keywords: armed conflict, food scarcity, hidden hunger, hunger, malnutrition
Procedia PDF Downloads 173449 Incomplete Existing Algebra to Support Mathematical Computations
Authors: Ranjit Biswas
Abstract:
The existing subject Algebra is incomplete to support mathematical computations being done by scientists of all areas: Mathematics, Physics, Statistics, Chemistry, Space Science, Cosmology etc. even starting from the era of great Einstein. A huge hidden gap in the subject ‘Algebra’ is unearthed. All the scientists today, including mathematicians, physicists, chemists, statisticians, cosmologists, space scientists, and economists, even starting from the great Einstein, are lucky that they got results without facing any contradictions or without facing computational errors. Most surprising is that the results of all scientists, including Nobel Prize winners, were proved by them by doing experiments too. But in this paper, it is rigorously justified that they all are lucky. An algebraist can define an infinite number of new algebraic structures. The objective of the work in this paper is not just for the sake of defining a distinct algebraic structure, but to recognize and identify a major gap of the subject ‘Algebra’ lying hidden so far in the existing vast literature of it. The objective of this work is to fix the unearthed gap. Consequently, a different algebraic structure called ‘Region’ has been introduced, and its properties are studied.Keywords: region, ROR, RORR, region algebra
Procedia PDF Downloads 53448 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 193447 Ground Source Ventilation and Solar PV Towards a Zero-Carbon House in Riyadh
Authors: Osamah S. Alanazi, Mohammad G. Kotbi, Mohammed O. AlFadil
Abstract:
While renewable energy technology is developing in Saudi Arabia, and the ambitious 2030 vision encourages the shift towards more efficient and clean energy usage. The research on the application of geothermal resources in residential use for the Saudi Arabian context will contribute towards a more sustainable environment. This paper is a part of an ongoing master's thesis, which its main goal is to investigate the possibility of achieving a zero-carbon house in Riyadh by applying a ground-coupled system into a current sustainable house that uses a grid-tied solar system. The current house was built and designed by King Saud University for the 2018 middle east solar decathlon competition. However, it failed to reach zero-carbon operation due to the high cooling demand. This study will redesign and validate the house using Revit and Carriers Hourly Analysis 'HAP' software with the use of ordinary least square 'OLS' regression. After that, a ground source ventilation system will be designed using the 'GCV Tool' to reduce cooling loads. After the application of the ground source system, the new electrical loads will be compared with the current house. Finally, a simple economic analysis that includes the cost of applying a ground source system will be reported. The findings of this study will indicate the possibility and feasibility of reaching a zero-carbon house in Riyadh, Saudi Arabia, using a ground-coupled ventilation system. While cooling in the residential sector is the dominant energy consumer in the Gulf region, this work will certainly help in moving towards using renewable sources to meet those demands. This paper will be limited to highlight the literature review, the methodology of the research, and the expected outcome.Keywords: renewable energy, zero-carbon houses, sustainable buildings, geothermal energy, solar PV, GCV Tool
Procedia PDF Downloads 183446 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 143445 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 262444 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 354443 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).
Procedia PDF Downloads 186442 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 162441 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 101440 Evaluation of Alternative Energy Sources for Energy Production in Turkey
Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen
Abstract:
In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy
Procedia PDF Downloads 631439 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues
Authors: Muhammad Muhammad Suleiman
Abstract:
Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.Keywords: cloud computing, steganography, information hiding, cloud storage, security
Procedia PDF Downloads 192438 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model
Procedia PDF Downloads 208437 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 478436 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment
Authors: Jingyuan Hu, Zhandong Liu
Abstract:
CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.Keywords: CRISPR, HMM, sequence alignment, gene editing
Procedia PDF Downloads 52435 Eradicating Micronutrient Deficiency through Biofortification
Authors: Ihtasham Hamza
Abstract:
In the contemporary world, where the West is afflicted by the diseases of excess nutrition, much of the rest globe suffers at the hands of hunger. A troubling constituent of hunger is micronutrient deficiency, also called hidden hunger. Major dependence on calorie-rich diets and low diet diversification are responsible for high malnutrition rates, especially in African and Asian countries. But the dilemma isn’t immune to solutions. Highlighting the substantial cause to be sole dependence on staples for food, biofortification has emerged as a novel tool to confront the widely distributed jeopardize of hidden hunger. Biofortification potentials the better nutritional approachability to commonalities overcoming various difficulties and reaching the doorstep. The crops associated with biofortification offer a rural-based involvement that, proposal, primarily reaches these more remote populations, which comprise a majority of the malnourished in many countries, and then penetrates to urban populations as assembly overages are marketed. Initial investments in agricultural research at a central location can generate high recurrent benefits at low cost as adapted biofortified cultivars become widely available in countries across time at low recurrent costs as opposed to supplementation which is comparatively expensive and requires continued financing over time, which may be imperilled by fluctuating political curiosity.Keywords: biofortified crops, hunger, malnutrition, agricultural practices
Procedia PDF Downloads 290