Search results for: energy equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10091

Search results for: energy equation

9971 Application of PV/Wind-Based Green Energy to Power Cellular Base Station

Authors: Francis Okodede, Edafe Lucky Okotie

Abstract:

Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station.

Keywords: base station, energy storage, green energy, rotor efficiency, solar energy, wind energy

Procedia PDF Downloads 99
9970 On Energy Condition Violation for Shifting Negative Mass Black Holes

Authors: Manuel Urueña Palomo

Abstract:

In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.

Keywords: black holes, CPT symmetry, negative mass, time transformation

Procedia PDF Downloads 149
9969 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 411
9968 A Fundamental Functional Equation for Lie Algebras

Authors: Ih-Ching Hsu

Abstract:

Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?

Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions

Procedia PDF Downloads 223
9967 Energy Policy and Interactions with Politics and Economics

Authors: A. Beril Tugrul

Abstract:

Demand on production and thereby the global need of energy is growing continuously. Each country has different trends on energy demand and supply according to their geopolitical and geographical locations, underground reserves, weather conditions and level of industrialization. Conventional energy resources such as oil, gas and coal –in other words fossil resources- remain dominant on primary energy supply in spite of causing of environmental problems. Energy supply and demand securities are essential within the energy importing and exporting countries. This concept affected all sectors, but especially impressed on political aspects of the countries and also global economic views.

Keywords: energy policy, energy economics, energy strategy, global trends, petro-dollar recycling

Procedia PDF Downloads 476
9966 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell

Authors: Deborah Eric, Abbas Ahmad Khan

Abstract:

Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.

Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation

Procedia PDF Downloads 165
9965 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region

Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci

Abstract:

In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.

Keywords: crossover model, critical region, fundamental equation, n-heptane

Procedia PDF Downloads 475
9964 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 331
9963 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation

Procedia PDF Downloads 432
9962 Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis

Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet

Abstract:

Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries.

Keywords: energy policy, energy security, Malaysia, renewable energy

Procedia PDF Downloads 244
9961 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 414
9960 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation

Authors: A. A. Soliman

Abstract:

The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.

Keywords: collocation method, MRLW equation, Quartic B-splines, solitons

Procedia PDF Downloads 303
9959 Energy Saving as a Mean to Increase Energy Access in Sub-Saharan Africa

Authors: Joseph Levodo, Ndimbarafine Young Tobin, E. Messina, P. Edouma

Abstract:

Energy efficiency can contribute significantly towards increasing clean energy access to modern energy services. Many developing countries have largely focused on expanding energy access by increasing supply. This is due to the fact the links between energy efficiency and clean energy access are often unnoticed. Energy efficiency measures offer the promise of reducing energy use and saving money on electricity bills, as well as reducing negative environmental externalities associated with the production of electricity. This paper seeks to address the economic and effectiveness of reducing energy consumption by integrating energy efficiency as a priority to meet energy access examines the barriers to energy efficient in sub-Saharan African countries. The findings from this study reveal that an appropriate policy can promote the development of more energy-efficient buildings, products and strengthen incentives for consumers, businesses, and industrial customers to pursue cost-effective energy-efficiency measures and to make investments that will provide future energy-efficiency improvements.

Keywords: barriers, Sub-Saharan Africa, cost effective, energy savings, clean energy

Procedia PDF Downloads 48
9958 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions

Procedia PDF Downloads 132
9957 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years

Authors: M. M. Wagh, V. V. Kulkarni

Abstract:

The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.

Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques

Procedia PDF Downloads 345
9956 Energy Potential of Turkey and Evaluation of Solar Energy Technology as an Alternative Energy

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

Emerging demand for energy in developing countries rapid population growth and industrialization are causing a rapid increase, such as Turkey. Energy is an important and indispensable factor in the industry. At the same time, energy is one of the main indicators that reflect a country's economic and social development potential. There is a linear relationship between the energy consumption and social development, and in parallel this situation, it is seen that energy consumption increase with economic growth and prosperity. In recent year’s, energy sources consumption is increasingly continuing, because of population growth and economy in Turkey. 80% of the energy used in Turkey is supplied from abroad. At the same time, while almost all of the energy obtained from our country is met by hydropower. Alternatively, studies of determining and using potential renewable energy sources such as solar energy have been realized for recent years. In this study, first of all, the situation of energy sources was examined in Turkey. Information of reserve/capacity, production and consumption values of energy sources were emphasized. For this purpose, energy production and consumption, CO2 emission and electricity energy consumption of countries were investigated. Energy consumption and electricity energy consumption per capita were comparatively analyzed.

Keywords: energy potential, alternative energy sources, solar energy, Turkey

Procedia PDF Downloads 440
9955 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility

Procedia PDF Downloads 218
9954 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 121
9953 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation

Authors: E. V. Krishnan

Abstract:

In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.

Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation

Procedia PDF Downloads 331
9952 Energy Justice and Economic Growth

Authors: Marinko Skare, Malgorzata Porada Rochon

Abstract:

This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets.

Keywords: energy justice, economic growth, panel data, energy transition

Procedia PDF Downloads 113
9951 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 112
9950 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect

Authors: Tai-Ping Chang

Abstract:

In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.

Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube

Procedia PDF Downloads 320
9949 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 262
9948 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple

Procedia PDF Downloads 479
9947 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 389
9946 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
9945 Energy Box Programme in the Netherlands

Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen

Abstract:

This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.

Keywords: energy-saving behavior, energy poverty, poverty, private rental sector

Procedia PDF Downloads 114
9944 Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry

Authors: Arvind Dhingra, Tejinder Singh Saggu

Abstract:

As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper.

Keywords: energy audit, energy conservation, energy efficient motors

Procedia PDF Downloads 531
9943 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis

Authors: Elisha Kyirem

Abstract:

Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.

Keywords: migration, adaptation, climate change, adaptation, poverty reduction

Procedia PDF Downloads 395
9942 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation

Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan

Abstract:

We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.

Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics

Procedia PDF Downloads 334