Search results for: Shanshan Meng
17 Multimodal Pedagogy for Students’ Creative Expressions in Visual Literacy Education
Abstract:
Having spent significant periods studying and working in North America and Europe, we, as two Chinese art educators, have been profoundly shaped by both Eastern and Western cultures. Consequently, our ambition is to enrich students' learning experiences by delving into and merging both cultural perspectives for innovative, creative expressions. This exposition draws on our action research study on students' visual literacy practices in a visual literacy course at a prominent Chinese university. The central premise was to explore innovative art forms by cross-utilizing various aspects of diverse cultures. By examining distinct cultural elements, we encouraged students to break away from familiar approaches and forge new paths in their creative endeavors. In implementing our curriculum, we utilized a multimodal pedagogy that deviated from the predominant print-based presentations typically employed in our classroom settings. This pedagogical approach effectively encouraged students to critically analyze the artifact, imbue it with their understanding and perspectives, and then produce an original piece. This approach also motivated students to leverage the semiotic potential of various communicative modes to address diverse cultural issues through their multimodal designs. To demonstrate the potential for cultural amalgamation, we utilized the artwork of Hong Kong-based artist Tik Ka. His works epitomize the fusion of Chinese traditions with Western pop culture, which served as a visual and conceptual reference point for students. Seeing how these distinct cultural elements could coexist and enrich each other in Tik Ka's work was inspiring and motivating for the students. Taken together, these pedagogical strategies helped create a dialogical space where students could actively experience, analyze, and negotiate complex modes of expression. This environment fostered active learning, encouraging students to apply their knowledge, question their assumptions, and reconsider their perspectives. Overall, such a unique approach to visual literacy education has the potential to reshape students' understanding of both cultures. By encouraging them to critically engage with their multimodal designs, we promoted an in-depth, nuanced appreciation of these diverse cultural heritages. The students no longer just interpreted and replicated images—they actively contributed to a dynamic and ongoing conversation between cultures.Keywords: multimodal pedagogy, creative expressions, visual literacy education, multimodal designs
Procedia PDF Downloads 7616 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems
Authors: Meng Miao, Jeongwoo Han, Cam Nguyen
Abstract:
Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems
Procedia PDF Downloads 23815 Modeling Curriculum for High School Students to Learn about Electric Circuits
Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai
Abstract:
Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.Keywords: electric circuits, modeling curriculum, science learning, scientific model
Procedia PDF Downloads 46014 Association between Organophosphate Pesticides Exposure and Cognitive Behavior in Taipei Children
Authors: Meng-Ying Chiu, Yu-Fang Huang, Pei-Wei Wang, Yi-Ru Wang, Yi-Shuan Shao, Mei-Lien Chen
Abstract:
Background: Organophosphate pesticides (OPs) are the most heavily used pesticides in agriculture in Taiwan. Therefore, they are commonly detected in general public including pregnant women and children. These compounds are proven endocrine disrupters that may affect the neural development in humans. The aim of this study is to assess the OPs exposure of children in 2 years of age and to examine the association between the exposure concentrations and neurodevelopmental effects in children. Methods: In a prospective cohort of 280 mother-child pairs, urine samples of prenatal and postnatal were collected from each participant and analyzed for metabolites of OPs by using gas chromatography-mass spectrometry. Six analytes were measured including dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). This study created a combined concentration measure for dimethyl compounds (DMs) consisting of the three dimethyl metabolites (DMP, DMTP, and DMDTP), for diethyl compounds (DEs) consisting of the three diethyl metabolites (DEP, DETP, and DEDTP) and six dialkyl phosphate (DAPs). The Bayley Scales of Infant and Toddler Development (Bayley-III) was used to assess children's cognitive behavior at 2 years old. The association between OPs exposure and Bayley-III scale score was determined by using the Mann-Whitney U test. Results: The measurements of urine samples are still on-going. This preliminary data are the report of 56 children aged 2 from the cohort. The detection rates for DMP, DMTP, DMDTP, DEP, DETP, and DEDTP are 80.4%, 69.6%, 64.3%, 64.3%, 62.5%, and 75%, respectively. After adjusting the creatinine concentrations of urine, the median (nmol/g creatinine) of urinary DMP, DMTP, DMDTP, DEP, DETP, DEDTP, DMs, DEs, and DAPs are 153.14, 53.32, 52.13, 19.24, 141.65, 192.17, 308.8, 311.6, and 702.11, respectively. The concentrations of urine are considerably higher than that in other countries. Children’s cognitive behavior was used three scales for Bayley-III, including cognitive, language and motor. In Mann-Whitney U test, the higher levels of DEs had significantly lower motor score (p=0.037), but no significant association was found between the OPs exposure levels and the score of either cognitive or language. Conclusion: The limited sample size suggests that Taipei children are commonly exposed to OPs and OPs exposure might affect the cognitive behavior of young children. This report will present more data to verify the results. The predictors of OPs concentrations, such as dietary pattern will also be included.Keywords: biomonitoring, children, neurodevelopment, organophosphate pesticides exposure
Procedia PDF Downloads 14113 TARF: Web Toolkit for Annotating RNA-Related Genomic Features
Abstract:
Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.Keywords: RNA-related genomic features, annotation, visualization, web server
Procedia PDF Downloads 20712 Study on the Focus of Attention of Special Education Students in Primary School
Authors: Tung-Kuang Wu, Hsing-Pei Hsieh, Ying-Ru Meng
Abstract:
Special Education in Taiwan has been facing difficulties including shortage of teachers and lack in resources. Some students need to receive special education are thus not identified or admitted. Fortunately, information technologies can be applied to relieve some of the difficulties. For example, on-line multimedia courseware can be used to assist the learning of special education students and take pretty much workload from special education teachers. However, there may exist cognitive variations between students in special or regular educations, which suggests the design of online courseware requires different considerations. This study aims to investigate the difference in focus of attention (FOA) between special and regular education students of primary school in viewing the computer screen. The study is essential as it helps courseware developers in determining where to put learning elements that matter the most on the right position of screen. It may also assist special education specialists to better understand the subtle differences among various subtypes of learning disabilities. This study involves 76 special education students (among them, 39 are students with mental retardation, MR, and 37 are students with learning disabilities, LDs) and 42 regular education students. The participants were asked to view a computer screen showing a picture partitioned into 3 × 3 areas with each area filled with text or icon. The subjects were then instructed to mark on the prior given paper sheets, which are also partitioned into 3 × 3 grids, the areas corresponding to the pictures on the computer screen that they first set their eyes on. The data are then collected and analyzed. Major findings are listed: 1. In both text and icon scenario, significant differences exist in the first preferred FOA between special and regular education students. The first FOA for the former is mainly on area 1 (upper left area, 53.8% / 51.3% for MR / LDs students in text scenario; and 53.8% / 56.8% for MR / LDs students in icons scenario), while the latter on area 5 (middle area, 50.0% and 57.1% in text and icons scenarios). 2. The second most preferred area in text scenario for students with MR and LDs are area 2 (upper-middle, 20.5%) and 5 (middle area, 24.3%). In icons scenario, the results are similar, but lesser in percentage. 3. Students with LDs that show similar preference (either in text or icons scenarios) in FOA to regular education students tend to be of some specific sub-type of learning disabilities. For instance, students with LDs that chose area 5 (middle area, either in text or icon scenario) as their FOA are mostly ones that have reading or writing disability. Also, three (out of 13) subjects in this category, after going through the rediagnosis process, were excluded from being learning disabilities. In summary, the findings suggest when designing multimedia courseware for students with MR and LDs, the essential learning elements should be placed on area 1, 2 and 5. In addition, FOV preference may also potentially be used as an indicator for diagnosing students with LDs.Keywords: focus of attention, learning disabilities, mental retardation, on-line multimedia courseware, special education
Procedia PDF Downloads 16411 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review
Authors: Qiyao Han, Xianhai Meng
Abstract:
Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.Keywords: fractal, urban infrastructure, sustainability, system-level resilience
Procedia PDF Downloads 27310 Characterization of Herberine Hydrochloride Nanoparticles
Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang
Abstract:
A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer
Procedia PDF Downloads 1229 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model
Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki
Abstract:
As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China
Procedia PDF Downloads 2878 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films
Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu
Abstract:
Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain
Procedia PDF Downloads 1537 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis
Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan
Abstract:
Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.Keywords: social support, anxiety, depression, COVID-19, meta-analysis
Procedia PDF Downloads 616 The Effect of Whole-Body Vertical Rhythm Training on Fatigue, Physical Activity, and Quality of Life to the Middle-Aged and Elderly with Hemodialysis Patients
Authors: Yen-Fen Shen, Meng-Fan Li
Abstract:
The study aims to investigate the effect of full-body vertical rhythmic training on fatigue, physical activity, and quality of life among middle-aged and elderly hemodialysis patients. The study adopted a quasi-experimental research method and recruited 43 long-term hemodialysis patients from a medical center in northern Taiwan, with 23 and 20 participants in the experimental and control groups, respectively. The experimental group received full-body vertical rhythmic training as an intervention, while the control group received standard hemodialysis care without any intervention. Both groups completed the measurements by using "Fatigue Scale", "Physical Activity Scale" and "Chinese version of the Kidney Disease Quality of Life Questionnaire" before and after the study. The experimental group underwent a 10-minute full-body vertical rhythmic training three times per week, which lasted for eight weeks before receiving regular hemodialysis treatment. The data were analyzed by SPSS 25 software, including descriptive statistics such as frequency distribution, percentages, means, and standard deviations, as well as inferential statistics, including chi-square, independent samples t-test, and paired samples t-test. The study results are summarized as follows: 1. There were no significant differences in demographic variables, fatigue, physical activity, and quality of life between the experimental and control groups in the pre-test. 2. After the intervention of the “full-body vertical rhythmic training,” the experimental group showed significantly better results in the category of "feeling tired and fatigued in the lower back", "physical functioning role limitation", "bodily pain", "social functioning", "mental health", and "impact of kidney disease on life quality." 3. The paired samples t-test results revealed that the control group experienced significant differences between the pre-test and post-test in the categories of feeling tired and fatigued in the lower back, bodily pain, social functioning mental health, and impact of kidney disease on life quality, with scores indicating a decline in life quality. Conversely, the experimental group only showed a significant worsening in bodily pain" and the impact of kidney disease on life quality, with lower change values compared to the control group. Additionally, there was an improvement in the condition of "feeling tired and fatigued in the lower back" for the experimental group. Conclusion: The intervention of the “full-body vertical rhythmic training” had a certain positive effect on the quality of life of the experimental group. While it may not entirely enhance patients' quality of life, it can mitigate the negative impact of kidney disease on certain aspects of the body. The study provides clinical practice, nursing education, and research recommendations based on the results and discusses the limitations of the research.Keywords: hemodialysis, full-body vertical rhythmic training, fatigue, physical activity, quality of life
Procedia PDF Downloads 235 A Foucauldian Analysis of Child Play: Case Study of a Preschool in the United States
Authors: Meng Wang
Abstract:
Historically, young members (children) in the society have been oppressed by adults through direct violent acts. Direct violence was evident in rampant child labor and child maltreatment cases. After acknowledging the rights of children from the United Nations, it is believed in public that children have been protected against direct physical violence. Nevertheless, at present, this paper argues from Foucauldian and disability study standpoints that similar to the old times, children are oppressed objects in the context of child play, which is constructed by adults to substitute direct violence in regulating children. Particularly, this paper suggests that on the one hand, preschool play is a new way that adults adopt to oppress preschoolers and regulate the society as a whole; on the other hand, preschoolers are taught how to play as an acquired skill and master self-regulation through play. There is a line of contemporary research that centers on child play from social constructivism perspective. Yet, current teaching practices pertaining to child play including guided child play and free play, in fact, serve the interest of adults and society at large. By acknowledging and deconstructing the prevalence of 'evidence-based best practice' in early childhood education field within western society, reconstruction of child-adult power relation could be achieved and alternative truth could be found in early childhood education. To support the argument of this paper, an on-going observational case study is conducted in a preschool setting in the United States. Age range of children is 2.5 to 4 years old. Approximately 10 children (5 boys) are participating in this case study. Observation is conducted throughout the weekdays as children follow through the classroom routine with a lead and an assistant teacher. Classroom teachers are interviewed pertaining to their classroom management strategies. Preliminary research finding of this case study suggested that preschool teachers tended to utilize scenarios from preschoolers’ dramatic play to impart core cultural values to young children. These values were pre-determined by adults. In addition, if young children have failed to follow teachers' guidance in terms of playing in a correct way, children ran the risk of being excluded from the play scenario by peers and adults. Furthermore, this study tended to indicate that through child play, preschoolers are obliged to develop an internal violence system, that is self-regulation skill to regulate their own behavior; and if this internal system is unestablished based on various assessments by adults, then potentially there will be consequences of negative labeling and disabling toward young children intended by adults. In conclusion, this paper applies Foucauldian analysis into the context of child play. At present, within preschool, child play is not free as it seems to be. Young children are expected to perform cultural tasks through their play activities designed by adults. Adults utilize child play as technologies of governmentality to further predict and regulate future society at large.Keywords: child play, developmentally appropriate practice, DAP, poststructuralism, technologies of governmentality
Procedia PDF Downloads 1554 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 733 A Study of the Atlantoaxial Fracture or Dislocation in Motorcyclists with Helmet Accidents
Authors: Shao-Huang Wu, Ai-Yun Wu, Meng-Chen Wu, Chun-Liang Wu, Kai-Ping Shaw, Hsiao-Ting Chen
Abstract:
Objective: To analyze the forensic autopsy data of known passengers and compare it with the National database of the autopsy report in 2017, and obtain the special patterned injuries, which can be used as the reference for the reconstruction of hit-and-run motor vehicle accidents. Methods: Analyze the items of the Motor Vehicle Accident Report, including Date of accident, Time occurred, Day, Acc. severity, Acc. Location, Acc. Class, Collision with Vehicle, Motorcyclists Codes, Safety equipment use, etc. Analyzed the items of the Autopsy Report included, including General Description, Clothing and Valuables, External Examination, Head and Neck Trauma, Trunk Trauma, Other Injuries, Internal Examination, Associated Items, Autopsy Determinations, etc. Materials: Case 1. The process of injury formation: the car was chased forward and collided with the scooter. The passenger wearing the helmet fell to the ground. The helmet crashed under the bottom of the sedan, and the bottom of the sedan was raised. Additionally, the sedan was hit on the left by the other sedan behind, resulting in the front sedan turning 180 degrees on the spot. The passenger’s head was rotated, and the cervical spine was fractured. Injuries: 1. Fracture of atlantoaxial joint 2. Fracture of the left clavicle, scapula, and proximal humerus 3. Fracture of the 1-10 left ribs and 2-7 right ribs with lung contusion and hemothorax 4. Fracture of the transverse process of 2-5 lumbar vertebras 5. Comminuted fracture of the right femur 6. Suspected subarachnoid space and subdural hemorrhage 7. Laceration of the spleen. Case 2. The process of injury formation: The motorcyclist wearing the helmet fell to the left by himself, and his chest was crushed by the car going straight. Only his upper body was under the car and the helmet finally fell off. Injuries: 1. Dislocation of atlantoaxial joint 2. Laceration on the left posterior occipital 3. Laceration on the left frontal 4. Laceration on the left side of the chin 5. Strip bruising on the anterior neck 6. Open rib fracture of the right chest wall 7. Comminuted fracture of both 1-12 ribs 8. Fracture of the sternum 9. Rupture of the left lung 10. Rupture of the left and right atria, heart tip and several large vessels 11. The aortic root is nearly transected 12. Severe rupture of the liver. Results: The common features of the two cases were the fracture or dislocation of the atlantoaxial joint and both helmets that were crashed. There were no atlantoaxial fractures or dislocations in 27 pedestrians (without wearing a helmet) versus motor vehicle accidents in 2017 the National database of an autopsy report, but there were two atlantoaxial fracture or dislocation cases in the database, both of which were cases of falling from height. Conclusion: The cervical spine fracture injury of the motorcyclist, who was wearing a helmet, is very likely to be a patterned injury caused by his/her fall and rollover under the sedan. It could provide a reference for forensic peers.Keywords: patterned injuries, atlantoaxial fracture or dislocation, accident reconstruction, motorcycle accident with helmet, forensic autopsy data
Procedia PDF Downloads 932 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 721 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years
Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng
Abstract:
Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics
Procedia PDF Downloads 6