Search results for: renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8597

Search results for: renewable energy

7157 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 400
7156 Characterization and the Study of Energy Potential of Municipal Solid Waste Disposed in Bauchi Town and Environs

Authors: Aliyu Mohammed Lawal, Dahiru Yau Gital

Abstract:

The characterisation and the energy potential of the municipal solid wastes in Bauchi town and environs were studied. It was found that, 35,000 tonnes of waste was generated annually at 0.19 kg/capital/day of which, the combination of plastics, rubber, polyethene bags constituted about 33%, followed by textile materials, leathers, wood 26%, combination of papers, cartons 19%, crop stalks/grass 11% and the remaining incombustible materials 11%. The heating value or calorific value of the wastes was determined using a digital calorimeter to be 6.43 MJ/kg, almost one-third of the energy content of peat which has a value of 15.9 MJ/kg. The calorific value of the fuel was found to be significant; hence, the waste could be used for energy generation.

Keywords: calorific value, characterization, digital calorimeter, incombustible, municipal solid waste

Procedia PDF Downloads 261
7155 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams

Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon

Abstract:

Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.

Keywords: distillation, heat exchanger, network pinch analysis, chemical engineering

Procedia PDF Downloads 369
7154 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 147
7153 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique

Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar

Abstract:

A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.

Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique

Procedia PDF Downloads 543
7152 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel

Procedia PDF Downloads 233
7151 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 611
7150 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 387
7149 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 242
7148 Critical Review of Clean Energy Mix as Means of Boosting Power Generation in Nigeria

Authors: B. Adebayo, A. A. Adebayo

Abstract:

Adequate power generation and supply are enormous challenges confronting Nigeria state today. This is a powerful mechanism that drives industrial development and socio-economy of any nation. The present level of power generation and supply have become national embarrassment to both government and the citizens of Nigeria, where over 60% of the population have no access to electricity. This paper is set to review the abundant clean energy alternative sources available in abundance that are capable of boosting power generation. The clean energy sources waiting to be exploited include: nuclear, solar and wind energy. The environmental benefits of these sources of power generation are identified. Nuclear energy is a powerful clean energy source. However, Africa accounted for 20% of known recoverable reserve and uranium produces heat of 500,000 MJ/kg. Moreover, Nigeria receives average daily solar radiation of over 5.249 kWh/m2/day. Researchers have shown that wind speed and power flux densities varied from 1.5 – 4.1 m/s and 5.7 – 22.5 W/m2 respectively. It is a fact that the cost of doing business in Nigeria is very high, leading to winding up of the multi-national companies and then led to increase unemployment level. More importantly, readily available vast quantity of energy will reduce cost of running industries. Hence, more industries will come on board, goods, services, and more job creation will be achieved. This clean source of power generation is devoid of production of green house gases, elimination of environmental pollution, and reduced waste disposal. Then Nigerians will live in harmony with the environment.

Keywords: power, generation, energy, mix, clean, industrial

Procedia PDF Downloads 310
7147 Sustainable Interiors: An Inquiry into Design Approach to Imbibe Energy Efficiency and Well-Being in Corporate Offices

Authors: Lipi Agarwal, Siddhant Patni

Abstract:

The corporate organizations are seeking for the spaces that are energy efficient and maximize occupant health and productivity. Thus, designing workplaces that effectively steward resources and supports the health, the well-being of its occupants has become a dire need of the hour. The purpose of this paper is to understand the design approach for creating sustainable interiors in corporate offices. The objective is to identify the factors that aid energy efficient design and elevates the well-being in building and communities. The paper will employ qualitative methodology and undertake case study approach to comprehend the role of Leadership in Energy and Environmental Design (LEED) and WELL (a global rating system for health and wellness) in providing sustainable interiors. The findings help the design fraternity in designing a workspace that optimizes the use of resources and advances the human health inside the built environment. The paper suggests the framework that leads to interior environment which is sustainable in nature.

Keywords: corporate interiors, energy efficiency, LEED, sustainability, WELL, well-being

Procedia PDF Downloads 128
7146 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 136
7145 A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance

Authors: Pengfei Liu, Yiyi Xu

Abstract:

There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency.

Keywords: renewable energy, wind turbine, turbine blade strength, aerodynamics-strength coupled optimization

Procedia PDF Downloads 178
7144 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks

Authors: Ebrahim Alrashed

Abstract:

Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.

Keywords: energy-aware routing, reliability, sink-hole attack, WSN

Procedia PDF Downloads 396
7143 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
7142 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 436
7141 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 163
7140 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis

Procedia PDF Downloads 462
7139 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 361
7138 Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.

Keywords: rubber buffer, coupler, energy absorption, impact tests

Procedia PDF Downloads 196
7137 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor

Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young

Abstract:

In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.

Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy

Procedia PDF Downloads 415
7136 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values

Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng

Abstract:

In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.

Keywords: chemical compositions, crop residues, efficient energy values, steam explosion

Procedia PDF Downloads 250
7135 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint

Procedia PDF Downloads 147
7134 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: building stock energy modelling, energy-savings, archetype

Procedia PDF Downloads 154
7133 Nonlinear Multivariable Analysis of CO2 Emissions in China

Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu

Abstract:

This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.

Keywords: China, CO₂ emissions, foreign direct investment, grey relational analysis

Procedia PDF Downloads 403
7132 Seismic Performance of Various Grades of Steel Columns Through Finite Element Analysis

Authors: Asal Pournaghshband, Roham Maher

Abstract:

This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation, and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.

Keywords: Energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades

Procedia PDF Downloads 24
7131 A Conceptual Study for Investigating the Preliminary State of Energy at the Birth of Universe and Understanding Its Emergence From the State of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

In this study, a comprehensive energy model is proposed and utilized to study the birth of universe from the state of nothing. The state of nothing main specification is introduced and its role in the creation of universe is studied. In addition, the current research work provides a different approach to some of the ongoing paradox in cosmology such as the singularity at the beginning of big bang, and the expansion of universe at an accelerated rate. Also, the possible mechanism responsible for the creation of space-time domain is investigated.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 50
7130 Energy and Exergy Analyses of Thin-Layer Drying of Pineapple Slices

Authors: Apolinar Picado, Steve Alfaro, Rafael Gamero

Abstract:

Energy and exergy analyses of thin-layer drying of pineapple slices (Ananas comosus L.) were conducted in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (100, 115 and 130 °C) and an air velocity of 1.45 m/s. The effects of drying variables on energy utilisation, energy utilisation ratio, exergy loss and exergy efficiency were studied. The enthalpy difference of the gas increased as the inlet gas temperature increase. It is observed that at the 75 minutes of the drying process the outlet gas enthalpy achieves a maximum value that is very close to the inlet value and remains constant until the end of the drying process. This behaviour is due to the reduction of the total enthalpy within the system, or in other words, the reduction of the effective heat transfer from the hot gas flow to the vegetable being dried. Further, the outlet entropy exhibits a significant increase that is not only due to the temperature variation, but also to the increase of water vapour phase contained in the hot gas flow. The maximum value of the exergy efficiency curve corresponds to the maximum value observed within the drying rate curves. This maximum value represents the stage when the available energy is efficiently used in the removal of the moisture within the solid. As the drying rate decreases, the available energy is started to be less employed. The exergetic efficiency was directly dependent on the evaporation flux and since the convective drying is less efficient that other types of dryer, it is likely that the exergetic efficiency has relatively low values.

Keywords: efficiency, energy, exergy, thin-layer drying

Procedia PDF Downloads 255
7129 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 142
7128 Comparison of Radiated Emissions in Offshore and Onshore Wind Turbine Towers

Authors: Sajeesh Sulaiman, Gomathisankar A., Aravind Devaraj, Aswin R., Vijay Kumar G., Rachana Raj

Abstract:

Wind turbines are the next big answer to the emerging and ever-growing demand for electricity, and this need is increasing day by day. These high mast structures, whether on land or on the sea, has also become one of the big sources of electromagnetic interferences (EMI) in the not so distant past. With the emergence of the AC-AC converter and drawing of large power cables through the wind turbine towers has made this clean and efficient source of renewable energy to become one of the culprits in creating electromagnetic interference. This paper will present the sources of such EMIs, a comparison of radiated emissions (both electric and magnetic field) patterns in wind turbine towers for both onshore and offshore wind turbines and close look into the IEC 61400-40 (new standard for EMC design on wind turbine). At present, offshore wind turbines are tested in onshore facilities. This paper will present the anomaly in results for offshore wind turbines when tested in onshore, which the existing standards and the upcoming standards have failed to address.

Keywords: emissions, electric field, magnetic field, wind turbine, tower, standards and regulations

Procedia PDF Downloads 247