Search results for: predictive equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2838

Search results for: predictive equations

1398 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites

Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu

Abstract:

The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.

Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation

Procedia PDF Downloads 72
1397 The Predictive Value of Extensor Grip Test for the Effectiveness of Treatment for Tennis Elbow: A Randomized Controlled Trial

Authors: Mohammad Javad Zehtab, S. Alireza Mirghasemi, Ali Majlesara, Parvin Tajik, Babak Siavashi

Abstract:

Objective: There are different modalities proposed for tennis elbow treatment with few randomized trials comparing them. We designed a study to compare the effectiveness of five different modalities and determine the usefulness of recently proposed extensor grip test (EGT) in predicting the response to treatment. Methods: In a randomized controlled clinical trial 92 of 98 tennis elbow patients in Sina hospital of Tehran, Iran between 2006 and 2007 fulfill trial entry criteria, among these patients 56 (60.9%) had positive EGT result. Stratified on EGT result, patients allocated randomly to 5 treatment groups: Brace (B) group, physiotherapy (P), brace + physiotherapy (BP), injection (I) and injection + physiotherapy (IP). Results: Patients who had positive result of EGT had better response to treatments: less SOC (p = 0.06), less PFFQ and patients’ satisfaction scores (p < 0.001). Among the treatment IP was the most successful, then BP, P and B, respectively; injection was the worst treatment modality. Response to treatment was comparable in all groups between EGT positive and negative patients except bracing; in which positive EGT was correlated with a dramatic response to treatment. Conclusion: In all patients IP and then BP is recommended but in EGT negatives, bracing seems to be of no use. Injection alone is not recommended in either group.

Keywords: tennis elbow, extensor grip test, physiotherapy, tennis elbow treatment

Procedia PDF Downloads 285
1396 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 445
1395 Nonlinear Dynamic Response of Helical Gear with Torque-Limiter

Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire

Abstract:

This paper investigates the nonlinear dynamic response of a mechanical torque limiter which is used to protect drive parts from overload (helical transmission gears). The system is driven by four excitations: two external excitations (aerodynamics torque and force) and two internal excitations (two mesh stiffness fluctuations). In this work, we develop a dynamic model with lumped components and 28 degrees of freedom. We use the Runge Kutta step-by-step time integration numerical algorithm to solve the equations of motion obtained by Lagrange formalism. The numerical results have allowed us to identify the sources of vibration in the wind turbine. Also, they are useful to help the designer to make the right design and correctly choose the times for maintenance.

Keywords: two-stage helical gear, lumped model, dynamic response, torque-limiter

Procedia PDF Downloads 353
1394 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 338
1393 Numerical Solutions of Fractional Order Epidemic Model

Authors: Sadia Arshad, Ayesha Sohail, Sana Javed, Khadija Maqbool, Salma Kanwal

Abstract:

The dynamical study of the carriers play an essential role in the evolution and global transmission of infectious diseases and will be discussed in this study. To make this approach novel, we will consider the fractional order model which is generalization of integer order derivative to an arbitrary number. Since the integration involved is non local therefore this property of fractional operator is very useful to study epidemic model for infectious diseases. An extended numerical method (ODE solver) is implemented on the model equations and we will present the simulations of the model for different values of fractional order to study the effect of carriers on transmission dynamics. Global dynamics of fractional model are established by using the reproduction number.

Keywords: Fractional differential equation, Numerical simulations, epidemic model, transmission dynamics

Procedia PDF Downloads 602
1392 Drivers of Energy Saving Behaviour: The Relative Influence of Normative, Habitual, Intentional, and Situational Processes

Authors: Karlijn Van Den Broek, Ian Walker, Christian Klöckner

Abstract:

Campaigns aiming to induce energy-saving behaviour among householders use a wide range of approaches that address many different drivers thought to underpin this behaviour. However, little research has compared the relative importance of the different factors that influence energy behaviour, meaning campaigns are not informed about where best to focus resources. Therefore, this study applies the Comprehensive Action Determination Model (CADM) to compare the role of normative, intentional, habitual, and situational processes on energy-saving behaviour. An online survey on a sample of households (N = 247) measured the CADM variables and the data was analysed using structural equation modelling. Results showed that situational and habitual processes were best able to account for energy saving behaviour while normative and intentional processes had little predictive power. These findings suggest that policymakers should move away from motivating householders to save energy and should instead focus their efforts on changing energy habits and creating environments that facilitate energy saving behaviour. These findings add to the wider development in social and environmental psychology that emphasizes the importance of extra-personal variables such as the physical environment in shaping behaviour.

Keywords: energy consumption, behavioural modelling, environmental psychology theory, habits, values

Procedia PDF Downloads 258
1391 Development of PCI Prediction Models for Distress Evaluation of Asphalt Pavements

Authors: Hamid Noori

Abstract:

A scientific approach is essential for evaluating pavement surface conditions at the network level. The Pavement Condition Index (PCI) is widely used to assess surface conditions and determine appropriate treatments. This study examines three national highways using a network survey vehicle to collect distress data. The first two corridors were used for evaluation and comparison, while the third corridor validated the predicted PCI values. Multiple linear regression (MLR) initially modeled the relationship between PCI and distress variables but showed poor predictive accuracy. Therefore, K-nearest neighbors (KNN) and artificial neural network (ANN) models were developed, providing better results. A methodology for prioritizing pavement sections was introduced, and the pavement sections were based on PCI, IRI, and rut values through Combined Index Rankings (CIR). In addition, a methodology has been proposed for the selection of appropriate treatment of the ranked candidate pavement section. The proposed treatment selection process considers PCI, IRI, rutting, and FWD test results, aligning with a customized PCI rating scale. A Decision Tree was developed to recommend suitable treatments based on these criteria.

Keywords: pavement distresses, pavement condition index, multiple linear regression, artificial neural network, k-nearest neighbors, combined index ranking

Procedia PDF Downloads 2
1390 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 224
1389 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement.

Keywords: finite difference method, salt-gradient solar-pond, solar energy, transient heat and mass transfer

Procedia PDF Downloads 372
1388 Control of Spherical Robot with Sliding Mode

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.

Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability

Procedia PDF Downloads 390
1387 Numerical Study of an Impinging Jet in a Coflow Stream

Authors: Rim Ben Kalifa, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

The present study treats different phenomena taking place in a configuration of air jet impinging on a flat surface in a coflow stream. A Computational Fluid Dynamics study is performed using the Reynolds-averaged Navier–Stokes equations by means of the Reynolds Stress Model (RSM) second order turbulent closure model. The results include mean and turbulent velocities and quantify the large effects of the coflow stream on an impinging air jet. The study of the jet in a no-directed coflow stream shows the presence of a phenomenon of recirculation near the flat plate. The influence of the coflow velocity ratio on the behavior of an impinging plane jet was also numerically investigated. The coflow stream imposed noticeable restrictions on the spreading of the impinging jet. The results show that the coflow stream decreases considerably the entrainment of air jet.

Keywords: turbulent jet, turbulence models, coflow stream, velocity ratio

Procedia PDF Downloads 239
1386 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieha

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: polynomial constitutive equation, solitary, stress solitary waves, nonlinear constitutive law

Procedia PDF Downloads 497
1385 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 194
1384 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: finite difference method, natural convection, porous medium, scale analysis, thermal stratification

Procedia PDF Downloads 332
1383 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms

Authors: Khlif Hamadi

Abstract:

Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.

Keywords: CRM practices, innovation capacity, organizational climate, the structural equation

Procedia PDF Downloads 117
1382 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 128
1381 Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel

Authors: Xiaolin Tang, Wei Yang, Xiaoan Chen

Abstract:

The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided.

Keywords: dual mass flywheel, hybrid electric vehicle, torsional vibration, powertrain, dynamics

Procedia PDF Downloads 409
1380 The Fluid Limit of the Critical Processor Sharing Tandem Queue

Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini

Abstract:

A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.

Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue

Procedia PDF Downloads 325
1379 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat

Authors: M. Venegas, M. De Vega, N. García-Hernando

Abstract:

Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.

Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy

Procedia PDF Downloads 286
1378 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 295
1377 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 100
1376 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 244
1375 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 233
1374 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 448
1373 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 581
1372 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 146
1371 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis

Authors: Florge Francis A. Sy

Abstract:

Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.

Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width

Procedia PDF Downloads 125
1370 Self-Efficacy, Self-Knowledge, Empathy and Psychological Well-Being as Predictors of Workers’ Job Performance in Food and Beverage Industries in the South-West, Nigeria

Authors: Michael Ayodeji Boyede

Abstract:

Studies have shown that workers’ job performance is very low in Nigeria, especially in the food and beverage industry. This trend had been partially attributed to low workers’ self-efficacy, poor self-knowledge, lack of empathy and poor psychological well-being. The descriptive survey design was adopted. Four factories were purposively selected from three states in Southwestern, Nigeria (Lagos, Ogun and Oyo States). Proportionate random sampling techniques were used in selecting 1,820 junior and supervisory cadre workers in Nestle Plc (369), Coca-Cola Plc (392), Cadbury Plc (443) and Nigeria Breweries (616). The five research instruments used were: Workers’ self-efficacy (r=0.81), Workers’ self-knowledge (r=0.78), Workers’ empathy (r=0.74), Workers’ psychological well-being (r=0.70) and Workers’ performance rating (r=0.72) scales. Quantitative data were analysed using Pearson product moment correlation, Multiple regression at 0.05 level of significance. Findings show that there were significant relationships between Workers’ job performance and self-efficacy (r=.56), self-knowledge (r=.54), Empathy (r=.55) and Psychological Well-being (r=.69) respectively. Self-efficacy, self-knowledge, empathy and psychological well-being jointly predict workers’ job performance (F (4,1815) = 491.05) accounting for 52.0% of its variance. Psychological well-being (B=.52). Self-efficacy (B=.10), self-knowledge (B=.11), empathy (B=. 09) had predictive relative weights on workers’ job performance. Inadequate knowledge and training of the supervisors led to a mismatch of workers thereby reducing workers’ job performance. High self-efficacy, empathy, psychological well-being and good self-knowledge influence workers job performance in the food and beverage industry. Based on the finding employers of labour should provide work environment that would enhance and promote the development of these factors among the workers.

Keywords: self-efficacy, self-knowledge, empathy, psychological well-being, job performance

Procedia PDF Downloads 262
1369 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 120