Search results for: panel regression techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10426

Search results for: panel regression techniques

9016 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
9015 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
9014 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis

Authors: Nadia Sghaier

Abstract:

In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.

Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques

Procedia PDF Downloads 201
9013 The Relationship between Corporate Governance and Intellectual Capital Disclosure: Malaysian Evidence

Authors: Rabiaal Adawiyah Shazali, Corina Joseph

Abstract:

The disclosure of Intellectual Capital (IC) information is getting more vital in today’s era of a knowledge-based economy. Companies are advised by accounting bodies to enhance IC disclosure which complements the conventional financial disclosures. There are no accounting standards for Intellectual Capital Disclosure (ICD), therefore the disclosure is entirely voluntary. Hence, this study aims to investigate the extent of ICD and to examine the relationship between corporate governance and ICD in Malaysia. This study employed content analysis of 100 annual reports by the top 100 public listed companies in Malaysia during 2012. The uniqueness of this study lies on its underpinning theory used where it applies the institutional isomorphism theory to support the effect of the attributes of corporate governance towards ICD. In order to achieve the stated objective, multiple regression analysis were employed to conduct this study. From the descriptive statistics, it was concluded that public listed companies in Malaysia have increased their awareness towards the importance of ICD. Furthermore, results from the multiple regression analysis confirmed that corporate governance affects the company’s ICD where the frequency of audit committee meetings and the board size has positively influenced the level of ICD in companies. Findings from this study would provide an incentive for companies in Malaysia to enhance the disclosure of IC. In addition, this study would assist Bursa Malaysia and other regulatory bodies to come up with a proper guideline for the disclosure of IC.

Keywords: annual report, content analysis, corporate governance, intellectual capital disclosure

Procedia PDF Downloads 215
9012 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 116
9011 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
9010 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
9009 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 155
9008 The Role of Personality Characteristics and Psychological Harassment Behaviors Which Employees Are Exposed on Work Alienation

Authors: Hasan Serdar Öge, Esra Çiftçi, Kazım Karaboğa

Abstract:

The main purpose of the research is to address the role of psychological harassment behaviors (mobbing) to which employees are exposed and personality characteristics over work alienation. Research population was composed of the employees of Provincial Special Administration. A survey with four sections was created to measure variables and reach out the basic goals of the research. Correlation and step-wise regression analyses were performed to investigate the separate and overall effects of sub-dimensions of psychological harassment behaviors and personality characteristic on work alienation of employees. Correlation analysis revealed significant but weak relationships between work alienation and psychological harassment and personality characteristics. Step-wise regression analysis revealed also significant relationships between work alienation variable and assault to personality, direct negative behaviors (sub dimensions of mobbing) and openness (sub-dimension of personality characteristics). Each variable was introduced into the model step by step to investigate the effects of significant variables in explaining the variations in work alienation. While the explanation ratio of the first model was 13%, the last model including three variables had an explanation ratio of 24%.

Keywords: alienation, five-factor personality characteristics, mobbing, psychological harassment, work alienation

Procedia PDF Downloads 405
9007 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 194
9006 Ozone Therapy and Pulsed Electromagnetic Fields Interplay in Controlling Tumor Growth, Symptom and Pain Management: A Case Report

Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, F. Sartori Thies, I. F. Minello, F. dos Santos de Oliveira

Abstract:

Background: The immune system has evolved several mechanisms to protect the host against cancer, and it has now been suggested that the expansion of its functions may prevent tumor growth and control the symptoms of cancer patients. Two techniques, ozone therapy and pulsed electromagnetic fields (PEMF), are independently associated with an increase in the immune system functions and they maybe help palliative care of patients in these conditions. Case Report: A patient with rectal adenocarcinoma with metastases decides to interrupt the clinical chemotherapy protocol due to refractoriness and side effects. As a palliative care alternative treatment it is suggested to the patient the use of ozone therapy associated with PEMF techniques. Results: The patient reports an improvement in well-being, in autonomy and in pain control. Imaging tests confirm a pause in tumor growth despite more than 60 days without using classic treatment. These results associated with palliative care alternative treatment stimulate the return to the chemotherapy protocol. Discussion: This case illustrates that these two techniques can contribute to the control of tumor growth and refractory symptoms, such as pain, probably by enhancing the immune system. Conclusions: The potential use of the combination of these two therapies, ozone therapy and PEMF therapy, can contribute to palliation of cancer patients, alone or in combination with pharmacological therapies. The conduct of future investigations on this paradigm can elucidate how much these techniques contribute to the survival and well-being of these patients.

Keywords: cancer, complementary and alternative medicine , ozone therapy, palliative care, PEMF therapy

Procedia PDF Downloads 155
9005 A Correlations Study on Nursing Staff's Shifts Systems, Workplace Fatigue, and Quality of Working Life

Authors: Jui Chen Wu, Ming Yi Hsu

Abstract:

Background and Purpose: Shift work of nursing staff is inevitable in hospital to provide continuing medical care. However, shift work is considered as a health hazard that may cause physical and psychological problems. Serious workplace fatigue of nursing shift work might impact on family, social and work life, moreover, causes serious reduction of quality of medical care, or even malpractice. This study aims to explore relationships among nursing staff’s shift, workplace fatigue and quality of working life. Method: Structured questionnaires were used in this study to explore relationships among shift work, workplace fatigue and quality of working life in nursing staffs. We recruited 590 nursing staffs in different Community Teaching hospitals in Taiwan. Data analysed by descriptive statistics, single sample t-test, single factor analysis, Pearson correlation coefficient and hierarchical regression, etc. Results: The overall workplace fatigue score is 50.59 points. In further analysis, the score of personal burnout, work-related burnout, over-commitment and client-related burnout are 57.86, 53.83, 45.95 and 44.71. The basic attributes of nursing staff are significantly different from those of workplace fatigue with different ages, licenses, sleeping quality, self-conscious health status, number of care patients of chronic diseases and number of care people in the obstetric ward. The shift variables revealed no significant influence on workplace fatigue during the hierarchical regression analysis. About the analysis on nursing staff’s basic attributes and shift on the quality of working life, descriptive results show that the overall quality of working life of nursing staff is 3.23 points. Comparing the average score of the six aspects, the ranked average score are 3.47 (SD= .43) in interrelationship, 3.40 (SD= .46) in self-actualisation, 3.30 (SD= .40) in self-efficacy, 3.15 (SD= .38) in vocational concept, 3.07 (SD= .37) in work aspects, and 3.02 (SD= .56) in organization aspects. The basic attributes of nursing staff are significantly different from quality of working life in different marriage situations, education level, years of nursing work, occupation area, sleep quality, self-conscious health status and number of care in medical ward. There are significant differences between shift mode and shift rate with the quality of working life. The results of the hierarchical regression analysis reveal that one of the shifts variables 'shift mode' which does affect staff’s quality of working life. The workplace fatigue is negatively correlated with the quality of working life, and the over-commitment in the workplace fatigue is positively related to the vocational concept of the quality of working life. According to the regression analysis of nursing staff’s basic attributes, shift mode, workplace fatigue and quality of working life related shift, the results show that the workplace fatigue has a significant impact on nursing staff’s quality of working life. Conclusion: According to our study, shift work is correlated with workplace fatigue in nursing staffs. This results work as important reference for human resources management in hospitals to establishing a more positive and healthy work arrangement policy.

Keywords: nursing staff, shift, workplace fatigue, quality of working life

Procedia PDF Downloads 272
9004 Development of Enhanced Data Encryption Standard

Authors: Benjamin Okike

Abstract:

There is a need to hide information along the superhighway. Today, information relating to the survival of individuals, organizations, or government agencies is transmitted from one point to another. Adversaries are always on the watch along the superhighway to intercept any information that would enable them to inflict psychological ‘injuries’ to their victims. But with information encryption, this can be prevented completely or at worst reduced to the barest minimum. There is no doubt that so many encryption techniques have been proposed, and some of them are already being implemented. However, adversaries always discover loopholes on them to perpetuate their evil plans. In this work, we propose the enhanced data encryption standard (EDES) that would deploy randomly generated numbers as an encryption method. Each time encryption is to be carried out, a new set of random numbers would be generated, thereby making it almost impossible for cryptanalysts to decrypt any information encrypted with this newly proposed method.

Keywords: encryption, enhanced data encryption, encryption techniques, information security

Procedia PDF Downloads 150
9003 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487
9002 Deformation Severity Prediction in Sewer Pipelines

Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed

Abstract:

Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.

Keywords: deformation, prediction, regression analysis, sewer pipelines

Procedia PDF Downloads 188
9001 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 269
9000 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 229
8999 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing

Procedia PDF Downloads 331
8998 Dynamic Analysis of Commodity Price Fluctuation and Fiscal Management in Sub-Saharan Africa

Authors: Abidemi C. Adegboye, Nosakhare Ikponmwosa, Rogers A. Akinsokeji

Abstract:

For many resource-rich developing countries, fiscal policy has become a key tool used for short-run fiscal management since it is considered as playing a critical role in injecting part of resource rents into the economies. However, given its instability, reliance on revenue from commodity exports renders fiscal management, budgetary planning and the efficient use of public resources difficult. In this study, the linkage between commodity prices and fiscal operations among a sample of commodity-exporting countries in sub-Saharan Africa (SSA) is investigated. The main question is whether commodity price fluctuations affects the effectiveness of fiscal policy as a macroeconomic stabilization tool in these countries. Fiscal management effectiveness is considered as the ability of fiscal policy to react countercyclically to output gaps in the economy. Fiscal policy is measured as the ratio of fiscal deficit to GDP and the ratio of government spending to GDP, output gap is measured as a Hodrick-Prescott filter of output growth for each country, while commodity prices are associated with each country based on its main export commodity. Given the dynamic nature of fiscal policy effects on the economy overtime, a dynamic framework is devised for the empirical analysis. The panel cointegration and error correction methodology is used to explain the relationships. In particular, the study employs the panel ECM technique to trace short-term effects of commodity prices on fiscal management and also uses the fully modified OLS (FMOLS) technique to determine the long run relationships. These procedures provide sufficient estimation of the dynamic effects of commodity prices on fiscal policy. Data used cover the period 1992 to 2016 for 11 SSA countries. The study finds that the elasticity of the fiscal policy measures with respect to the output gap is significant and positive, suggesting that fiscal policy is actually procyclical among the countries in the sample. This implies that fiscal management for these countries follows the trend of economic performance. Moreover, it is found that fiscal policy has not performed well in delivering macroeconomic stabilization for these countries. The difficulty in applying fiscal stabilization measures is attributable to the unstable revenue inflows due to the highly volatile nature of commodity prices in the international market. For commodity-exporting countries in SSA to improve fiscal management, therefore, fiscal planning should be largely decoupled from commodity revenues, domestic revenue bases must be improved, and longer period perspectives in fiscal policy management are the critical suggestions in this study.

Keywords: commodity prices, ECM, fiscal policy, fiscal procyclicality, fully modified OLS, sub-saharan africa

Procedia PDF Downloads 163
8997 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa

Authors: Martial Amou

Abstract:

This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.

Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District

Procedia PDF Downloads 325
8996 Study on the Factors Influencing the Built Environment of Residential Areas on the Lifestyle Walking Trips of the Elderly

Authors: Daming Xu, Yuanyuan Wang

Abstract:

Abstract: Under the trend of rapid expansion of urbanization, the motorized urban characteristics become more and more obvious, and the walkability of urban space is seriously affected. The construction of walkability of space, as the main mode of travel for the elderly in their daily lives, has become more and more important in the current social context of serious aging. Settlement is the most basic living unit of residents, and daily shopping, medical care, and other daily trips are closely related to the daily life of the elderly. Therefore, it is of great practical significance to explore the impact of built environment on elderly people's daily walking trips at the settlement level for the construction of pedestrian-friendly settlements for the elderly. The study takes three typical settlements in Harbin Daoli District in three different periods as examples and obtains data on elderly people's walking trips and built environment characteristics through field research, questionnaire distribution, and internet data acquisition. Finally, correlation analysis and multinomial logistic regression model were applied to analyze the influence mechanism of built environment on elderly people's walkability based on the control of personal attribute variables in order to provide reference and guidance for the construction of walkability for elderly people in built environment in the future.

Keywords: built environment, elderly, walkability, multinomial logistic regression model

Procedia PDF Downloads 76
8995 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
8994 Gender-Specific Association between Obstructive Sleep Apnea and Cognitive Impairment among Adults: A Population-based UK Biobank Study

Authors: Ke Qiu, Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Although much has been done to investigate the influence of obstructive sleep apnea (OSA) on cognitive function, little attention has been paid to the role which gender differences play in this association. In the present study, we aim to explore the gender-specific association between OSA and cognitive impairment. Participants from UK biobank who have completed at least one of the five baseline cognitive tests (visuospatial memory, prospective memory, fluid intelligence, short numeric memory and reaction time) were included and were further categorized into three groups: (1) OSA, (2) self-reported snoring but without OSA, and (3) healthy controls (without OSA or snoring). Multivariable regression analysis was performed to examine the associations among snoring, OSA and performance of each of the five cognitive domains. A total of 267,889 participants (47% male, mean age: 57 years old) were included in our study. In the multivariable regression analysis, female participants in the OSA group had a higher risk of having poor prospective memory (OR: 1.24, 95% CI: 1.02~1.50, p = 0.03). Meanwhile, among female participants, OSA were inversely associated with the performances of fluid intelligence (β: -0.29, 95% CI: -0.46~-0.13, p < 0.001) and short-numeric memory (β: -0.14, 95% CI: -0.35~0.08, p = 0.02). In contrast, among male participants, no significant association was observed between OSA and impairment of the five cognitive domains. Overall, OSA was significantly associated with cognitive impairment in female participants rather than in male participants, indicating that more special attention and timely interventions should be given to female OSA patients to prevent further cognitive impairment.

Keywords: obstructive sleep apnea (OSA), cognitive impairment, gender-specific association, UK biobank

Procedia PDF Downloads 151
8993 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 447
8992 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment

Procedia PDF Downloads 433
8991 Digital Art Fabric Prints: Procedure, Process and Progress

Authors: Tripti Singh

Abstract:

Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples.

Keywords: digital art, fabric prints, digital fabric prints, new media

Procedia PDF Downloads 515
8990 Patient Reported Outcome Measures Post Implant Based Reconstruction Basildon Hospital

Authors: Danny Fraser, James Zhang

Abstract:

Aim of the study: Our study aims to identify any statistically significant evidence as it relates to PROMs for mastectomy and implant-based reconstruction to guide future surgical management. Method: The demographic, pre and post-operative treatment and implant characteristics were collected of all patients at Basildon hospital who underwent breast reconstruction from 2017-2023. We used the Breast-Q psychosocial well-being, physical well-being, and satisfaction with breasts scales. An Independent t-test was conducted for each group, and linear regression of age and implant size. Results: 69 patients were contacted, and 39 PROMs returned. The mean age of patients was 57.6. 40% had smoked before, and 40.8% had BMI>30. 29 had pre-pectoral placement, and 40 had subpectoral placement. 17 had smooth implants, and 52 textured. Sub pectoral placement was associated with higher (75.7 vs. 61.9 p=0.046) psychosocial scores than pre pectoral, and textured implants were associated with a lower physical score than the smooth surface (34.7 VS 50.2 P=0.046). On linear regression, age was positively associated (p=0.007) with psychosocial score. Conclusion: We present a large cohort of patients who underwent breast reconstruction. Understanding the PROMs of these procedures can guide clinicians, patients and policy makers to be more informed of the course of rehabilitation of these operations. Significance: We have found that from a patient perspective subpectoral implant placement was associated with a statistically significant improvement in psychosocial scores.

Keywords: breast surgery, mastectomy, breast implants, oncology

Procedia PDF Downloads 61
8989 Investigating the Impact of Job-Related and Organisational Factors on Employee Engagement: An Emotionally Relevant Approach Based on Psychological Climate and Organisational Emotional Intelligence (OEI)

Authors: Nuno Da Camara, Victor Dulewicz, Malcolm Higgs

Abstract:

Factors on employee engagement: In particular, although theorists have described the critical role of emotional cognition of the workplace environment as antecedents to employee engagement, empirical research on the impact of emotional cognition on employee engagement is limited. However, previous researchers have typically provided evidence of the link between emotional cognition of the workplace environment and workplace attitudes such as job satisfaction and organisational commitment. This study therefore aims to investigate the impact of emotional cognition of job, role, leader and organisation domains of the work environment – as represented by measures of psychological climate and organizational emotional intelligence (OEI) - on employee engagement. The research is based on a quantitative cross-sectional survey of employees in a UK charity organization (n=174). The research instruments applied include the psychological climate scale, the organisational emotional intelligence questionnaire (OEIQ) and the Utrecht Work Engagement Scale (UWES). The data were analysed using hierarchical regression and partial least squares (PLS) analytical techniques. The results of the study show that both psychological climate and OEI, which represent emotional cognition of job, role, leader and organisation domains in the workplace are significant drivers of employee engagement. In particular, the study found that a sense of contribution and challenge at work are the strongest drivers of vigour, dedication and absorption and highlights the importance of emotionally relevant approaches in furthering our understanding of workplace engagement.

Keywords: employee engagement, organisational emotional intelligence, psychological climate, workplace attitudes

Procedia PDF Downloads 505
8988 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India

Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.

Abstract:

Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.

Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)

Procedia PDF Downloads 149
8987 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162