Search results for: composite field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10065

Search results for: composite field

8655 The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet

Authors: Ravinesh C. Deo

Abstract:

This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x=10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra displays the largest eddies generated by the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR.

Keywords: plane jet, Reynolds number, nozzle-exit conditions, nozzle geometry, aspect ratio

Procedia PDF Downloads 167
8654 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 416
8653 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: flexural properties, glutarylation, glutaric anhydride, tensile properties

Procedia PDF Downloads 186
8652 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 259
8651 Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor

Authors: Huai-Cong Liu,Tae Chul Jeong,Ju Lee

Abstract:

This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data.

Keywords: SynRM, magnetic-saturation, magnetic circuit, analytical modeling

Procedia PDF Downloads 499
8650 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials

Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie

Abstract:

The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.

Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT

Procedia PDF Downloads 65
8649 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 289
8648 Contribution of Geomatics Technology in the Capability to Implement an On-Demand Transport in Oran Wilaya (the Northwestern of Algeria)

Authors: Brahmia Nadjet

Abstract:

The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient. They rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible for the advance reservation, planning and organization, and studying the different ODT criteria (organizational, technical, geographical, etc.). As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This paper presents the study of an ODT implementation in the west of Algeria, by developing the geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS). So, we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.

Keywords: ODT, geomatics, GIS, transport systems

Procedia PDF Downloads 468
8647 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai

Abstract:

Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.

Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities

Procedia PDF Downloads 314
8646 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process

Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar

Abstract:

In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.

Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm

Procedia PDF Downloads 342
8645 Combining Work and Study: A Solution for Stronger University-Industry Linkage

Authors: Payam Najafi, Behnam Ebrahimi, Hamid Montazerolghaem, Safoura Akbari-Alavijeh, Rasoul Tarkesh Esfahani

Abstract:

The combination of work and study has been recently gained lots of attention due to the crucial demand of industries to skillfully trained youth. Nevertheless, the distance between university and industry makes this combination challenging. According to the OECD (2012), in most countries, there is a limited link between students’ field of study and their area of work while studying. On the other hand, high unemployment rates among the specialized workforce, which is common in developing countries, highlights the need to strengthen this relationship. Innovative Center of Isfahan Chamber of Commerce has defined a project called 'POUYESH', which helps students to find related work opportunities to their field of study as well as supporting industries to supply their needed workforce. The present research is sought to explore the effect of the running project as a model of combining work and study on the university-industry linkage.

Keywords: work and study, university-industry linkage, POUYESH project, field of study

Procedia PDF Downloads 181
8644 Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill.

Keywords: heterogeneous characteristics, leachate levels, saturated-unsaturated seepage, seepage field, slope stability

Procedia PDF Downloads 244
8643 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 34
8642 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 95
8641 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 86
8640 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed

Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous

Abstract:

This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.

Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor

Procedia PDF Downloads 37
8639 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods

Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh

Abstract:

Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.

Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection

Procedia PDF Downloads 296
8638 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 190
8637 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 84
8636 Production of Metal Matrix Composites with Diamond for Abrasive Cutting Resistance by Gas Infiltration Casting

Authors: Haydar S. Al Shabbani, M. Marshall, R. Goodall

Abstract:

Metal matrix composites (MMCs) have been explored for many applications for many decades. Recently, this includes investigations for thermal applications associated with electronics, such as in heat sinks. Here, to promote thermal conductivity, composites of a metal matrix with diamond particles are used. However, this class of composites has not yet been extensively examined for mechanical and tribological behavior, especially for applications that require extreme mechanical and tribological strength, such as the resistance to abrasive cutting. Therefore, this research seeks to develop a composite material with metal matrix and diamond particles which resist abrasive and cutting forces. The development progresses through a series of steps, exploring methods to process the material, understanding the mechanics of abrasive behavior and optimizing the composite structure to resist abrasive cutting. In processing, infiltration casting under gas pressure has been applied to molten aluminum to obtain a significant penetration of the metal into a preform of diamond particles. Different diamond particle sizes were used with different surface modifications (coated/uncoated), and to compare resulting composites with the same particle sizes. Al-1 wt.% Mg as a matrix alloy was utilised to investigate the possible effect of Mg on bonding phases during the infiltration process. The mechanical behavior and microstructure of the materials produced have been characterised. These tests showed that the surface modification of the diamond particles with a reactive material (Ti-coating) has an important role for enhancing the bonding between the aluminium matrix and diamond reinforcement as apparent under SEM observation. The effect of this improved bond is seen in the cutting resistance of the material.

Keywords: aluminium, composites, diamond, Ti-coated, tribology

Procedia PDF Downloads 266
8635 Comparison between Open and Closed System for Dewatering with Geotextile: Field and Comparative Study

Authors: Matheus Müller, Delma Vidal

Abstract:

The present paper aims to expose two techniques of dewatering for sludge, analyzing its operations and dewatering processes, aiming at improving the conditions of disposal of residues with high liquid content. It describes the field tests performed on two geotextile systems, a closed geotextile tube and an open geotextile drying bed, both of which are submitted to two filling cycles. The sludge used in the filling cycles for the field trials is from the water treatment plant of the Technological Center of Aeronautics – CTA, in São José dos Campos, Brazil. Data about volume and height abatement due to the dewatering and consolidation were collected per time, until it was observed constancy. With the laboratory analysis of the sludge allied to the data collected in the field, it was possible to perform a critical comparative study between the observed and the scientific literature, in this way, this paper expresses the data obtained and compares them with the bibliography. The tests were carried out on three fronts: field tests, including the filling cycles of the systems with the sludge from CTA, taking measurements of filling time per cycle and maximum filling height per cycle, heights against the abatement by dewatering of the systems over time; tests carried out in the laboratory, including the characterization of the sludge and removal of material samples from the systems to ascertain the solids content within the systems per time and; comparing the data obtained in the field and laboratory tests with the scientific literature. Through the study, it was possible to perceive that the process of densification of the material inside a closed system, such as the geotextile tube, occurs faster than the observed in the drying bed system. This process of accelerated densification can be brought about by the pumping pressure of the sludge in its filling and by the confinement of the residue through the permeable geotextile membrane (allowing water to pass through), accelerating the process of densification and dewatering by its own weight after the filling with sludge.

Keywords: consolidation, dewatering, geotextile drying bed, geotextile tube

Procedia PDF Downloads 124
8634 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 132
8633 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 132
8632 Comparison of Physical and Chemical Effects on Senescent Cells

Authors: Svetlana Guryeva, Inna Kornienko, Andrey Usanov, Dmitry Usanov, Elena Petersen

Abstract:

Every day cells in our organism are exposed to various factors: chemical agents, reactive oxygen species, ionizing radiation, and others. These factors can cause damage to DNA, cellular membrane, intracellular compartments, and proteins. The fate of cells depends on the exposure intensity and duration. The prolonged and intense exposure causes the irreversible damage accumulation, which triggers the permanent cell cycle arrest (cellular senescence) or cell death programs. In the case of low dose of impacts, it can lead to cell renovation and to cell functional state improvement. Therefore, it is a pivotal question to investigate the factors and doses that result in described positive effects. In order to estimate the influence of different agents, the proliferation index and levels of cell death markers (annexin V/propidium iodide), senescence-associated β-galactosidase, and lipofuscin were measured. The experiments were conducted on primary human fibroblasts of the 8th passage. According to the levels of mentioned markers, these cells were defined as senescent cells. The effect of low-frequency magnetic field was investigated. Different modes of magnetic field exposure were tested. The physical agents were compared with chemical agents: metformin (10 mM) and taurine (0.8 mM and 1.6 mM). Cells were incubating with chemicals for 5 days. The highest decrease in the level of senescence-associated β-galactosidase (21%) and lipofuscin (17%) was observed in the primary senescent fibroblasts after 5 days after double treatments with 48 h intervals with low-frequency magnetic field. There were no significant changes in the proliferation index after magnetic field application. The cytotoxic effect of magnetic field was not observed. The chemical agent taurine (1.6 mM) decreased the level of senescence-associated β-galactosidase (23%) and lipofuscin (22%). Metformin improved the activity of senescence-associated β-galactosidase on 15% and the level of lipofuscin on 19% in this experiment. According to these results, the effect of double treatment with 48 h interval with low-frequency magnetic field and the effect of taurine (1.6 mM) were comparable to the effect of metformin, for which anti-aging properties are proved. In conclusion, this study can become the first step towards creation of the standardized system for the investigation of different effects on senescent cells.

Keywords: biomarkers, magnetic field, metformin, primary fibroblasts, senescence, taurine

Procedia PDF Downloads 274
8631 Collagen Scaffold Incorporated with Macrotyloma uniflorum Plant Extracts as a–Burn/Wound Dressing Material, in Vitro and in Vivo Evaluation

Authors: Thangavelu Muthukumar, Thotapalli Parvathaleswara Sastry

Abstract:

Collagen is the most abundantly available connective tissue protein, which is being used as a biomaterial for various biomedical applications. Presently, fish wastes are disposed improperly which is causing serious environmental pollution resulting in offensive odour. Fish scales are promising source of Type I collagen. Medicinal plants have been used since time immemorial for treatment of various ailments of skin and dermatological disorders especially cuts, wounds, and burns. Developing biomaterials from the natural sources which are having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. With these objectives in view we have developed a wound dressing material containing fish scale collagen (FSC) incorporated with Macrotyloma uniflorum plant extract (PE). The wound dressing composite was characterized for its physiochemical properties using conventional methods. SEM image revealed that the composite has fibrous and porous surface which helps in transportation of oxygen as well as absorbing wound fluids. The biomaterial has shown 95% biocompatibility with required mechanical strength and has exhibited antimicrobial properties. This biomaterial has been used as a wound dressing material in experimental wounds of rats. The healing pattern was evaluated by macroscopic observations, panimetric studies, biochemical, histopathological observations. The results showed faster healing pattern in the wounds treated with CSPE compared to the other composites used in this study and untreated control. These experiments clearly suggest that CSPE can be used as wound/burn dressing materials.

Keywords: collagen, wound dressing, Macrotyloma uniflorum, burn dressing

Procedia PDF Downloads 413
8630 Harnessing Earth's Electric Field and Transmission of Electricity

Authors: Vaishakh Medikeri

Abstract:

Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.

Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity

Procedia PDF Downloads 370
8629 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 113
8628 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 347
8627 Comparison of Improvement with Bored Piling and Stone Column in a Selected Area in Kocaeli

Authors: Utkan Mutman, Omer Ayhan

Abstract:

In highway work in a field that is selected in Kocaeli/TURKEY district to the ground improvement and piling is done. In this study, the degree of improvement was observed on the ground after the columns made of stone and bored piles in the field and compared. In this context, improving the ground before and after analysis and solution analysis made with values obtained by the finite element method, which was made Plaxis program. On the improved ground, in order to control of manufactured bored piles, continuity of bored piles and pile load tests were carried out. In addition, the test of load capacity specified in the project is made of stone columns. Test results of the soil improvement were observed to be successful, the results obtained in the field and the results obtained from Plaxis program were compared.

Keywords: bored piling, stone columns, plaxis, soil improvement

Procedia PDF Downloads 294
8626 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent

Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik

Abstract:

Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.

Keywords: Adsorption, cellulose, halloysite, triclosan

Procedia PDF Downloads 125