Search results for: water-efficient techniques
5411 Parasitological Tracking of Wild Passerines in Group for the Rehabilitation of Native Fauna and Its Habitat
Authors: Catarina Ferreira Rebelo, Luis Madeira de Carvalho, Fernando González González
Abstract:
The order Passeridae corresponds to the richest and most abundant group of birds, with approximately 6500 species, making it possible to assert that two out of every three bird species are passerines. They are globally distributed and exhibit remarkable morphological and ecological variability. While numerous species of parasites have been identified and described in wild birds, there has been little focus on passeriformes. Seventeen passerines admitted to GREFA, a Wildlife Rehabilitation Center, throughout the months of October, November and December 2022 were analyzed. The species included Aegithalos caudatus, Anthus pratensis, Carduelis chloris, Certhia brachydactyla, Erithacus rubecula, Fringilla coelebs, Parus ater, Passer domesticus, Sturnus unicolor, Sylvia atricapilla, Turdus merula and Turdus philomelos. Data regarding past history was collected, and necropsies were conducted to identify the cause of death and body condition and determine the presence of parasites. Additionally, samples of intestinal content were collected for direct/fecal smear, flotation and sedimentation techniques. Sixteen (94.1%) passerines were considered positive for the presence of parasitic forms in at least one of the techniques used, including parasites detected in necropsy. Adult specimens of both sexes and tritonymphs of Monojoubertia microhylla and ectoparasites of the genus Ornithonyssus were identified. Macroscopic adult endoparasitic forms were also found during necropsies, including Diplotriaena sp., Serratospiculum sp. and Porrocaecum sp.. Parasitism by coccidia was observed with no sporulation. Additionally, eggs of nematodes from various genera were detected, such as Diplotriaena sp., Capillaria sp., Porrocaecum sp., Syngamus sp. and Strongyloides sp., eggs of trematodes, specifically the genus Brachylecithum and cestode oncospheres, whose genera were not identified. To our knowledge, the respiratory nematode Serratospiculum sp. found in this study is being reported for the first time in passerines in the Iberian Peninsula, along with the application of common coprological techniques for the identification of eggs in the intestinal content. The majority of parasites identified utilize intermediary hosts present in the diet of the passerines sampled. Furthermore, the discovery of certain parasites with a direct life cycle could potentially exert greater influence, particularly in specific scenarios such as within nests or during the rehabilitation process in wildlife centers. These parasites may impact intraspecific competition, increase susceptibility to predators or lead to death. However, their cost to wild birds is often not clear, as individuals can endure various parasites without significant harm. Furthermore, wild birds serve as important sources of parasites across different animal groups, including humans and other mammals. This study provides invaluable insights into the parasitic fauna of these birds, not only serving as a cornerstone for future epidemiological investigations but also enhancing our comprehension of these avian species.Keywords: birds, parasites, passerines, wild, spain
Procedia PDF Downloads 425410 Enhancing Teaching of Engineering Mathematics
Authors: Tajinder Pal Singh
Abstract:
Teaching of mathematics to engineering students is an open ended problem in education. The main goal of mathematics learning for engineering students is the ability of applying a wide range of mathematical techniques and skills in their engineering classes and later in their professional work. Most of the undergraduate engineering students and faculties feels that no efforts and attempts are made to demonstrate the applicability of various topics of mathematics that are taught thus making mathematics unavoidable for some engineering faculty and their students. The lack of understanding of concepts in engineering mathematics may hinder the understanding of other concepts or even subjects. However, for most undergraduate engineering students, mathematics is one of the most difficult courses in their field of study. Most of the engineering students never understood mathematics or they never liked it because it was too abstract for them and they could never relate to it. A right balance of application and concept based teaching can only fulfill the objectives of teaching mathematics to engineering students. It will surely improve and enhance their problem solving and creative thinking skills. In this paper, some practical (informal) ways of making mathematics-teaching application based for the engineering students is discussed. An attempt is made to understand the present state of teaching mathematics in engineering colleges. The weaknesses and strengths of the current teaching approach are elaborated. Some of the causes of unpopularity of mathematics subject are analyzed and a few pragmatic suggestions have been made. Faculty in mathematics courses should spend more time discussing the applications as well as the conceptual underpinnings rather than focus solely on strategies and techniques to solve problems. They should also introduce more ‘word’ problems as these problems are commonly encountered in engineering courses. Overspecialization in engineering education should not occur at the expense of (or by diluting) mathematics and basic sciences. The role of engineering education is to provide the fundamental (basic) knowledge and to teach the students simple methodology of self-learning and self-development. All these issues would be better addressed if mathematics and engineering faculty join hands together to plan and design the learning experiences for the students who take their classes. When faculties stop competing against each other and start competing against the situation, they will perform better. Without creating any administrative hassles these suggestions can be used by any young inexperienced faculty of mathematics to inspire engineering students to learn engineering mathematics effectively.Keywords: application based learning, conceptual learning, engineering mathematics, word problem
Procedia PDF Downloads 2325409 Analysis for Shear Spinning of Tubes with Hard-To-Work Materials
Authors: Sukhwinder Singh Jolly
Abstract:
Metal spinning is one such process in which the stresses are localized to a small area and the material is made to flow or move over the mandrel with the help of spinning tool. Spinning of tubular products can be performed by two techniques, forward spinning and backward spinning. Many researchers have studied the process both experimentally and analytically. An effort has been made to apply the process to the spinning of thin wall, highly precision, small bore long tube in hard-to-work materials such as titanium.Keywords: metal spinning, hard-to-work materials, roller diameter, power consumption
Procedia PDF Downloads 3885408 Development of Thermal Regulating Textile Material Consisted of Macrocapsulated Phase Change Material
Authors: Surini Duthika Fernandopulle, Kalamba Arachchige Pramodya Wijesinghe
Abstract:
Macrocapsules containing phase change material (PCM) PEG4000 as core and Calcium Alginate as the shell was synthesized by in-situ polymerization process, and their suitability for textile applications was studied. PCM macro-capsules were sandwiched between two polyurethane foams at regular intervals, and the sandwiched foams were subsequently covered with 100% cotton woven fabrics. According to the mathematical modelling and calculations 46 capsules were required to provide cooling for a period of 2 hours at 56ºC, so a panel of 10 cm x 10 cm area with 25 parts (having 5 capsules in each for 9 parts are 16 parts spaced for air permeability) were effectively merged into one textile material without changing the textile's original properties. First, the available cooling techniques related to textiles were considered and the best cooling techniques suiting the Sri Lankan climatic conditions were selected using a survey conducted for Sri Lankan Public based on ASHRAE-55-2010 standard and it consisted of 19 questions under 3 sections categorized as general information, thermal comfort sensation and requirement of Personal Cooling Garments (PCG). The results indicated that during daytime, majority of respondents feel warm and during nighttime also majority have responded as slightly warm. The survey also revealed that around 85% of the respondents are willing to accept a PCG. The developed panels were characterized using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) tests and the findings from FTIR showed that the macrocapsules consisted of PEG 4000 as the core material and Calcium Alginate as the shell material and findings from TGA showed that the capsules had the average weight percentage for core with 61,9% and shell with 34,7%. After heating both control samples and samples incorporating PCM panels, it was discovered that only the temperature of the control sample increased after 56ºC, whereas the temperature of the sample incorporating PCM panels began to regulate the temperature at 56ºC, preventing a temperature increase beyond 56ºC.Keywords: phase change materials, thermal regulation, textiles, macrocapsules
Procedia PDF Downloads 1295407 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice
Authors: Chiling Chen, Chiaoying Chou, Siyang Wu
Abstract:
Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy
Procedia PDF Downloads 3015406 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 1815405 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 1365404 Monocrystalline Silicon Surface Passivation by Porous Silicon
Authors: Mohamed Ben Rabha
Abstract:
In this paper, we report on the effect of porous silicon (PS) treatment on the surface passivation of monocrystalline silicon (c-Si). PS film with a thickness of 80 nm was deposited by stain etching. It was demonstrated that PS coating is a very interesting solution for surface passivation. The level of surface passivation is determined by techniques based on photoconductance and FTIR. As a results, the effective minority carrier lifetime increase from 2 µs to 7 µs at ∆n=1015 cm-3 and the reflectivity reduce from 28 % to about 7 % after PS coating.Keywords: porous silicon, effective minority carrier lifetime, reflectivity
Procedia PDF Downloads 4465403 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads
Authors: Gaurav Kumar Sinha
Abstract:
In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies
Procedia PDF Downloads 695402 Non-Invasive Evaluation of Patients After Percutaneous Coronary Revascularization. The Role of Cardiac Imaging
Authors: Abdou Elhendy
Abstract:
Numerous study have shown the efficacy of the percutaneous intervention (PCI) and coronary stenting in improving left ventricular function and relieving exertional angina. Furthermore, PCI remains the main line of therapy in acute myocardial infarction. Improvement of procedural techniques and new devices have resulted in an increased number of PCI in those with difficult and extensive lesions, multivessel disease as well as total occlusion. Immediate and late outcome may be compromised by acute thrombosis or the development of fibro-intimal hyperplasia. In addition, progression of coronary artery disease proximal or distal to the stent as well as in non-stented arteries is not uncommon. As a result, complications can occur, such as acute myocardial infarction, worsened heart failure or recurrence of angina. In a stent, restenosis can occur without symptoms or with atypical complaints rendering the clinical diagnosis difficult. Routine invasive angiography is not appropriate as a follow up tool due to associated risk and cost and the limited functional assessment. Exercise and pharmacologic stress testing are increasingly used to evaluate the myocardial function, perfusion and adequacy of revascularization. Information obtained by these techniques provide important clues regarding presence and severity of compromise in myocardial blood flow. Stress echocardiography can be performed in conjunction with exercise or dobutamine infusion. The diagnostic accuracy has been moderate, but the results provide excellent prognostic stratification. Adding myocardial contrast agents can improve imaging quality and allows assessment of both function and perfusion. Stress radionuclide myocardial perfusion imaging is an alternative to evaluate these patients. The extent and severity of wall motion and perfusion abnormalities observed during exercise or pharmacologic stress are predictors of survival and risk of cardiac events. According to current guidelines, stress echocardiography and radionuclide imaging are considered to have appropriate indication among patients after PCI who have cardiac symptoms and those who underwent incomplete revascularization. Stress testing is not recommended in asymptomatic patients, particularly early after revascularization, Coronary CT angiography is increasingly used and provides high sensitive for the diagnosis of coronary artery stenosis. Average sensitivity and specificity for the diagnosis of in stent stenosis in pooled data are 79% and 81%, respectively. Limitations include blooming artifacts and low feasibility in patients with small stents or thick struts. Anatomical and functional cardiac imaging modalities are corner stone for the assessment of patients after PCI and provide salient diagnostic and prognostic information. Current imaging techniques cans serve as gate keeper for coronary angiography, thus limiting the risk of invasive procedures to those who are likely to benefit from subsequent revascularization. The determination of which modality to apply requires careful identification of merits and limitation of each technique as well as the unique characteristic of each individual patient.Keywords: coronary artery disease, stress testing, cardiac imaging, restenosis
Procedia PDF Downloads 1685401 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 965400 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention
Authors: Lawrence Williams
Abstract:
As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.Keywords: DNS, tunneling, exfiltration, botnet
Procedia PDF Downloads 765399 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method
Authors: M. O. Olayiwola
Abstract:
Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation
Procedia PDF Downloads 4325398 Coastal Foodscapes as Nature-Based Coastal Regeneration Systems
Authors: Gulce Kanturer Yasar, Hayriye Esbah Tuncay
Abstract:
Cultivated food production systems have coexisted harmoniously with nature for thousands of years through ancient techniques. Based on this experience, experimentation, and discovery, these culturally embedded methods have evolved to sustain food production, restore ecosystems, and harmoniously adapt to nature. In this era, as we seek solutions to food security challenges, enhancing and repairing our food production systems is crucial, making them more resilient to future disasters without harming the ecosystem. Instead of unsustainable conventional systems with ongoing destructive effects, we must investigate innovative and restorative production systems that integrate ancient wisdom and technology. Whether we consider agricultural fields, pastures, forests, coastal wetland ecosystems, or lagoons, it is crucial to harness the potential of these natural resources in addressing future global challenges, fostering both socio-economic resilience and ecological sustainability through strategic organization for food production. When thoughtfully designed and managed, marine-based food production has the potential to function as a living infrastructure system that addresses social and environmental challenges despite its known adverse impacts on the environment and local economies. These areas are also stages of daily life, vibrant hubs where local culture is produced and shared, contributing to the distinctive rural character of coastal settlements and exhibiting numerous spatial expressions of public nature. When we consider the history of humanity, indigenous communities have engaged in these sustainable production practices that provide goods for food, trade, culture, and the environment for many ages. Ecosystem restoration and socio-economic resilience can be achieved by combining production techniques based on ecological knowledge developed by indigenous societies with modern technologies. Coastal lagoons are highly productive coastal features that provide various natural services and societal values. They are especially vulnerable to severe physical, ecological, and social impacts of changing, challenging global conditions because of their placement within the coastal landscape. Coastal lagoons are crucial in sustaining fisheries productivity, providing storm protection, supporting tourism, and offering other natural services that hold significant value for society. Although there is considerable literature on the physical and ecological dimensions of lagoons, much less literature focuses on their economic and social values. This study will discuss the possibilities of coastal lagoons to achieve both ecologically sustainable and socio-economically resilient while maintaining their productivity by combining local techniques and modern technologies. The case study will present Turkey’s traditional aquaculture method, "Dalyans," predominantly operated by small-scale farmers in coastal lagoons. Due to human, ecological, and economic factors, dalyans are losing their landscape characteristics and efficiency. These 1000-year-old ancient techniques, rooted in centuries of traditional and agroecological knowledge, are under threat of tourism, urbanization, and unsustainable agricultural practices. Thus, Dalyans have diminished from 29 to approximately 4-5 active Dalyans. To deal with the adverse socio-economic and ecological consequences on Turkey's coastal areas, conserving Dalyans by protecting their indigenous practices while incorporating contemporary methods is essential. This study seeks to generate scenarios that envision the potential ways protection and development can manifest within case study areas.Keywords: coastal foodscape, lagoon aquaculture, regenerative food systems, watershed food networks
Procedia PDF Downloads 765397 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness
Authors: Daniel Gebreslassie Mekonnen
Abstract:
Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.Keywords: emotional intelligence, leadership style, job performance, work motivation
Procedia PDF Downloads 1025396 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 685395 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 1735394 Technology Enriched Classroom for Intercultural Competence Building through Films
Authors: Tamara Matevosyan
Abstract:
In this globalized world, intercultural communication is becoming essential for understanding communication among people, for developing understanding of cultures, to appreciate the opportunities and challenges that each culture presents to people. Moreover, it plays an important role in developing an ideal personification to understand different behaviors in different cultures. Native speakers assimilate sociolinguistic knowledge in natural conditions, while it is a great problem for language learners, and in this context feature films reveal cultural peculiarities and involve students in real communication. As we know nowadays the key role of language learning is the development of intercultural competence as communicating with someone from a different cultural background can be exciting and scary, frustrating and enlightening. Intercultural competence is important in FL learning classroom and here feature films can perform as essential tools to develop this competence and overcome the intercultural gap that foreign students face. Current proposal attempts to reveal the correlation of the given culture and language through feature films. To ensure qualified, well-organized and practical classes on Intercultural Communication for language learners a number of methods connected with movie watching have been implemented. All the pre-watching, while watching and post-watching methods and techniques are aimed at developing students’ communicative competence. The application of such activities as Climax, Role-play, Interactive Language, Daily Life helps to reveal and overcome mistakes of cultural and pragmatic character. All the above-mentioned activities are directed at the assimilation of the language vocabulary with special reference to the given culture. The study dwells into the essence of culture as one of the core concepts of intercultural communication. Sometimes culture is not a priority in the process of language learning which leads to further misunderstandings in real life communication. The application of various methods and techniques with feature films aims at developing students’ cultural competence, their understanding of norms and values of individual cultures. Thus, feature film activities will enable learners to enlarge their knowledge of the particular culture and develop a fundamental insight into intercultural communication.Keywords: climax, intercultural competence, interactive language, role-play
Procedia PDF Downloads 3465393 Acquisition and Preservation of Traditional Medicinal Knowledge in Rural Areas of KwaZulu Natal, South Africa
Authors: N. Khanyile, P. Dlamini, M. Masenya
Abstract:
Background: Most of the population in Africa is still dependent on indigenous medicinal knowledge for treating and managing ailments. Indigenous traditional knowledge owners/practitioners who own this knowledge are consulted by communities, but their knowledge is not known how they get it. The question of how knowledge is acquired and preserved remains one of the biggest challenges in traditional healing and treatment with herbal medicines. It is regrettable that despite the importance and recognition of indigenous medicinal knowledge globally, the details of acquirement, storing and transmission, and preservation techniques are not known. Hence this study intends to unveil the process of acquirement and transmission, and preservation techniques of indigenous medical knowledge by its owners. Objectives: This study aims to assess the process of acquiring and preservation of traditional medicinal knowledge by traditional medicinal knowledge owners/practitioners in uMhlathuze Municipality, in the province of KwaZulu-Natal, South Africa. The study was guided by four research objectives which were to: identify the types of traditional medicinal knowledge owners who possess this knowledge, establish the approach used by indigenous medicinal knowledge owners/healers for acquiring medicinal knowledge, identify the process of preservation of medicinal knowledge by indigenous medicinal knowledge owners/healers, and determine the challenges encountered in transferring the knowledge. Method: The study adopted a qualitative research approach, and a snowball sampling technique was used to identify the study population. Data was collected through semi-structured interviews with indigenous medicinal knowledge owners. Results: The findings suggested that uMhlathuze municipality had different types of indigenous medicinal knowledge owners who possess valuable knowledge. These are diviners (Izangoma), faith healers (Abathandazi), and herbalists (Izinyanga). The study demonstrated that indigenous medicinal knowledge is acquired in many different ways, including visions, dreams, and vigorous training. The study also revealed the acquired knowledge is preserved or shared with specially chosen children and trainees. Conclusion: The study concluded that this knowledge is gotten through vigorous training, which requires the learner to be attentive and eager to learn. It was recommended that a study of this nature be conducted but at a broader level to enhance an informed conclusion and recommendations.Keywords: preserving, indigenous medicinal knowledge, indigenous knowledge, indigenous medicinal knowledge owners/practitioners, acquiring
Procedia PDF Downloads 875392 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations
Authors: Yanjie Zhu, André Jesus, Irwanda Laory
Abstract:
Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)
Procedia PDF Downloads 3065391 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3255390 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels
Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner
Abstract:
A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle
Procedia PDF Downloads 1145389 Biosphere Compatibility and Sustainable Development
Authors: Zinaida I. Ivanova, Olga V. Yudenkova
Abstract:
The article addresses the pressing need to implement the principle of the biosphere compatibility as the core prerequisite for sustainable development. The co-authors argue that a careful attitude towards the biosphere, termination of its overutilization, analysis of the ratio between the biospheric potential of a specific area and its population numbers, coupled with population regulation techniques represent the factors that may solve the problems of ecological depletion. However these problems may only be tackled through the employment of the high-quality human capital, capable of acting with account for the principles of nature conservation.Keywords: biosphere compatibility, eco-centered conscience, human capital, sustainable development
Procedia PDF Downloads 3905388 Innovative Approaches in Dental Implantology: Enhancing Osseointegration and Patient Outcomes
Authors: Apameh Moslem Gheshlaghi
Abstract:
This research explores advancements in dental implantology with a focus on improving osseointegration and long-term patient outcomes. It highlights cutting-edge materials, surface modifications, and minimally invasive surgical techniques. The study also evaluates the role of digital dentistry and 3D printing in revolutionizing implant design and placement. Findings demonstrate significant improvements in patient satisfaction, procedural efficiency, and overall success rates, paving the way for more predictable and sustainable practices in modern dentistry.Keywords: dental implants, osseointegration, digital dentistry, 3D printing
Procedia PDF Downloads 85387 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1505386 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques
Authors: Zakaria Baka, Halima Alem
Abstract:
Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques
Procedia PDF Downloads 1965385 Study of Morphological Changes of the River Ganga in Patna District, Bihar Using Remote Sensing and GIS Techniques
Authors: Bhawesh Kumar, A. P. Krishna
Abstract:
There are continuous changes upon earth’s surface by a variety of natural and anthropogenic agents cut, carry away and depositing of minerals from land. Running water has higher capacity of erosion than other geomorphologic agents. This research work has been carried out on Ganga River, whose channel is continuously changing under the influence of geomorphic agents and human activities in the surrounding regions. The main focus is to study morphological characteristics and sand dynamics of Ganga River with particular emphasis on bank lines and width changes using remote sensing and GIS techniques. The advance remote sensing data and topographical data were interpreted for obtaining 52 years of changes. For this, remote sensing data of different years (LANDSAT TM 1975, 1988, 1993, ETM 2005 and ETM 2012) and toposheet of SOI for the year 1960 were used as base maps for this study. Sinuosity ratio, braiding index and migratory activity index were also established. It was found to be 1.16 in 1975 and in 1988, 1993, 2005 and 2005 it was 1.09, 1.11, 1.1, 1.09 respectively. The analysis also shows that the minimum value found in 1960 was in reach 1 and maximum value is 4.8806 in 2012 found in reach 4 which suggests creation of number of islands in reach 4 for the year 2012. Migratory activity index (MAI), which is a standardized function of both length and time, was computed for the 8 representative reaches. MAI shows that maximum migration was in 1975-1988 in reach 6 and 7 and minimum migration was in 1993-2005. From the channel change analysis, it was found that the shifting of bank line was cyclic and the river Ganges showed a trend of southward maximum values. The advanced remote sensing data and topographical data helped in obtaining 52 years changes in the river due to various natural and manmade activities like flood, water velocity and excavation, removal of vegetation cover and fertile soil excavation for the various purposes of surrounding regions.Keywords: braided index, migratory activity index (MAI), Ganga river, river morphology
Procedia PDF Downloads 3495384 Parametric Inference of Elliptical and Archimedean Family of Copulas
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique.Keywords: elliptical copula, archimedean copula, estimation, coverage rate
Procedia PDF Downloads 675383 Mastopexy with the "Dermoglandular Autоaugmentation" Method. Increased Stability of the Result. Personalized Technique
Authors: Maksim Barsakov
Abstract:
Introduction. In modern plastic surgery, there are a large number of breast lift techniques.Due to the spreading information about the "side effects" of silicone implants, interest in implant-free mastopexy is increasing year after year. However, despite the variety of techniques, patients sometimes do not get full satisfaction from the results of mastopexy because of the unexpressed filling of the upper pole, extended anchoring postoperative scars and sometimes because of obtaining an aesthetically unattractive breast shape. The stability of the result after mastopexy depends on many factors, including postoperative rehabilitation. Stability of weight and hormonal background, stretchability of tissues. The high recurrence rate of ptosis and short-term aesthetic effect of mastopexy indicate the urgency of improving surgical techniques and increasing the stabilization of breast tissue. Purpose of the study. To develop and introduce into practice a technique of mastopexy based on the use of a modified Ribeiro flap, as well as elements of tissue movement and fixation designed to increase the stability of postoperative mastopexy. In addition, to give indications for the application of this surgical technique. Materials and Methods. it operated on 103 patients aged 18 to 53 years from 2019 to 2023 according to the reported method. These were patients with primary mastopexy, secondary mastopexy, and also patient with implant removal and one-stage mastopexy. The patients were followed up for 12 months to assess the stability of the result. Results and their discussion. Observing the patients, we noted greater stability of the breast shape and upper pole filling compared to the conventional classical methods. We did not have to resort to anchoring scars. In 90 percent of cases, a inverted T-shape scar was used. In 10 percent, the J-scar was used. The quantitative distribution of complications identified among the operated patients is as follows: worsened healing of the junction of vertical and horizontal sutures at the period of 1-1.5 months after surgery - 15 patients; at treatment with ointment method healing was observed in 7-30 days; permanent loss of NAC sensitivity - 0 patients; vascular disorders in the area of NAC/areola necrosis - 0 patients; marginal necrosis of the areola-2 patients. independent healing within 3-4 weeks without aesthetic defects. Aesthetically unacceptable mature scars-3 patients; partial liponecrosis of the autoflap unilaterally - 1 patient. recurrence of ptosis - 1 patient (after weight loss of 12 kg). In the late postoperative period, 2 patients became pregnant, gave birth, and no lactation problems were observed. Conclusion. Thus, in the world of plastic surgery methods of breast lift continue to improve, which is especially relevant in modern times, due to the increased attention to this operation. The author's proposed method of mastopexy with glandular autoflap allows obtaining in most cases a stable result, a fuller breast shape, avoiding the presence of extended anchoring scars, and also preserves the possibility of lactation. The author of this article has obtained a patent for invention for this method of mastopexy.Keywords: mastopexy, mammoplasty, autoflap, personal technique
Procedia PDF Downloads 415382 Reading Strategy Instruction in Secondary Schools in China
Authors: Leijun Zhang
Abstract:
Reading literacy has become a powerful tool for academic success and an essential goal of education. The ability to read is not only fundamental for pupils’ academic success but also a prerequisite for successful participation in today’s vastly expanding multi-literate textual environment. It is also important to recognize that, in many educational settings, students are expected to learn a foreign/second language for successful participation in the increasingly globalized world. Therefore, it is crucial to help learners become skilled foreign-language readers. Research indicates that students’ reading comprehension can be significantly improved through explicit instruction of multiple reading strategies. Despite the wealth of research on how to enhance learners’ reading comprehension achievement by identifying an enormous range of reading strategies and techniques for assisting students in comprehending specific texts, relatively scattered studies have centered on whether these reading comprehension strategies and techniques are used in classrooms, especially in Chinese academic settings. Given the central role of ‘the teacher’ in reading instruction, the study investigates the degree of importance that EFL teachers attach to reading comprehension strategies and their classroom employment of those strategies in secondary schools in China. It also explores the efficiency of reading strategy instruction on pupils’ reading comprehension performance. As a mix-method study, the analysis drew on data from a quantitative survey and interviews with seven teachers. The study revealed that the EFL teachers had positive attitudes toward the use of cognitive strategies despite their insufficient knowledge about and limited attention to the metacognitive strategies and supporting strategies. Regarding the selection of reading strategies for instruction, the mandated curriculum and high-stakes examinations, text features and demands, teaching preparation programs and their own EFL reading experiences were the major criteria in their responses, while few teachers took into account the learner needs in their choice of reading strategies. Although many teachers agreed upon the efficiency of reading strategy instruction in developing students’ reading comprehension competence, three challenges were identified in their implementation of the strategy instruction. The study provides some insights into reading strategy instruction in EFL contexts and proposes implications for curriculum innovation, teacher professional development, and reading instruction research.Keywords: reading comprehension strategies, EFL reading instruction, language teacher cognition, teacher education
Procedia PDF Downloads 90