Search results for: electroacoustic methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15387

Search results for: electroacoustic methods

14007 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 227
14006 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 133
14005 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 83
14004 Origins of Chicago Common Brick: Examining a Masonry Shell Encasing a New Ando Museum

Authors: Daniel Joseph Whittaker

Abstract:

This paper examines the broad array of historic sites from which Chicago common brick has emerged, and the methods this brick has been utilized within and around a new hybrid structure recently completed-and periodically opened to the public, as a private art, architecture, design, and social activism gallery space. Various technical aspects regarding the structural and aesthetic reuse methods of salvaged brick within the interior and exterior of this new Tadao Ando-designed building in Lincoln Park, Chicago, are explored. This paper expands specifically upon the multiple possible origins of Chicago common brick, as well as the extant brick currently composing the surrounding alley which is integral to demarcating the southern site boundary of the old apartment building now gallery. Themes encompassing Chicago’s archeological and architectural history, local resource extraction, and labor practices permeate this paper’s investigation into urban, social and architectural history and building construction technology advancements through time.

Keywords: masonry construction, history brickmaking, private museums, Chicago Illinois, Tadao Ando

Procedia PDF Downloads 173
14003 An Overview on Aluminum Matrix Composites: Liquid State Processing

Authors: S. P. Jordan, G. Christian, S. P. Jeffs

Abstract:

Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.

Keywords: aluminium matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements

Procedia PDF Downloads 100
14002 Trends and Perspectives of Agrotourism Development in Georgia

Authors: Tamar Lazariashvili

Abstract:

The development of agrotourism in Georgia has significant potential. The trend of population growth and demand for agrotourism products makes the interest and importance of the development of this field even more relevant. The article studies the trends in the development of agrotourism in Georgia; SWOT analysis reveals the potential for the development of agrotourism and assesses the perspectives, examines the factors hindering the development of agrotourism, assesses the role of the state in the development of agrotourism. Objectives: The purpose of the study is to determine the development trends of agrotourism in Georgia and to develop recommendations for prospective directions based on the assessment of the field's potential. Methodologies: Research methods are used: analysis, synthesis, induction, deduction, comparison, statistical (selection, grouping, observation, trend) and other methods, as well as SWOT analysis. Contributions: A positive trend in the development of agrotourism has been revealed. It is also shown that the demand for agrotourism products is growing. The agro touristic potential of Georgia was assessed and prospective directions for the development of the field have been determined. Conclusions: are drawn on the problems identified in the work and recommendations are proposed on ways to effectively use the potential opportunities of agrotourism and ways of long-term development.

Keywords: agrotourism, agrotourism products, agrotourism potential, development prospects.

Procedia PDF Downloads 94
14001 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery

Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat

Abstract:

The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs

Procedia PDF Downloads 420
14000 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)

Authors: Hamidrza Joodaki

Abstract:

The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.

Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)

Procedia PDF Downloads 363
13999 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 289
13998 Ethno-Botanical Research on Medicinal Plants Commonly Used for Children’s Health in South East Nigeria

Authors: Chioma J. Nwakamma, Blessing O. Oyedemi, Garuba Omosun

Abstract:

This research surveys and documents information on medicinal plants and their botanical preparations used in the treatment of children’s ailments in South-Eastern Nigeria. Children under the age of 5 in developing countries suffer from diseases with high morbidity and mortality rate yearly due to inaccessible and unaffordable healthcare. Structured questionnaires were administered to herbal sellers, traditional medicine practitioners, nursing mothers, and adult dwellers to collect data on the names of plants used to treat the conditions, methods of preparation, duration of treatment, adverse effects, and the methods of administration of the plant materials. A total of 135 plants belonging to 55 families were identified for the management of children’s health in the area. Common pediatric ailments which were said to be treated with herbal remedies by the respondents included malaria, pneumonia, stomach ache, diarrhea, dysentery, measles, chickenpox/smallpox, convulsion, jaundice, pile, ringworm, scabies, eczema, stubborn cough, scurvy, catarrh, wounds, boils, insect bites, food poison, cholera, and umbilical cord complications. Percentages of respondents were; herbal sellers (48.2%), traditional medical practitioners (21.6%), nursing mothers (11.1%), and others (19.1%). The most occurring plant families were Euphorbiaceae, Fabaceae, and Apocynaceae, with 8 species of plants each followed by Annonaceae and Asteriaceae with 7 and 6 species, respectively. The recipes were made from the combination of different parts of two or more plant species, and others were made from single plant parts. Methods of extraction were mostly decoction and raw-squeezing out of the juice and infusion, while oral administration was the main route of administration.

Keywords: ethno-botanicals, children’s health, medicinal plants, South-Eastern Nigeria

Procedia PDF Downloads 104
13997 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 341
13996 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 75
13995 Determination and Evaluation of the Need of Land Consolidation for Nationalization Purpose with the Survey Results

Authors: Turgut Ayten, Tayfun Çay, Demet Ayten

Abstract:

In this research, nationalization method for obtaining land on the destination of Ankara-Konya High Speed Train in Turkey; Land consolidation for nationalization purpose as an alternative solution on obtaining land; a survey prepared for land owners whose lands were nationalized and institution officials who carries out the nationalization and land consolidation was applied, were investigated and the need for land consolidation for nationalization purpose is tried to be put forth. Study area is located in the Konya city- Kadınhanı district-Kolukısa and Sarikaya neighbourhood in Turkey and land consolidation results of the selected field which is on the destination of the high-speed train route were obtained. The data obtained was shared with the landowners in the research area, their choice between the nationalization method and land consolidation for nationalization method was questioned. In addition, the organization and institution officials who are accepted to used primarily by the state for obtaining land that are needed for the investments of state, and institution officials who make land consolidation were investigated on the issues of the efficiency of the methods they used and if they tried different methods.

Keywords: nationalization, land consolidation, land consolidation for nationalization

Procedia PDF Downloads 327
13994 Sustainable Community Participation in Australia

Authors: Virginia Dickson-Swift, Amanda Kenny, Jane Farmer, Sarah Larkins, Karen Carlisle, Helen Hickson

Abstract:

In this presentation, we will focus on the methods of Remote Services Futures (RSF), an evidence-based method of community participation that was developed in Scotland. Using oral health as the focus, we will discuss the ways that RSF can be used to achieve sustainable engagement with stakeholders from various parts of the community. We will describe our findings of using RSF methods to engage with rural communities, including the steps involved and what happened when we asked people about the oral health services that they thought were needed in their community. We found that most community members started by thinking that a public dental clinic was required in every community, which is not a sustainable health service delivery option. Through a series of facilitated workshops, communities were able to discuss and prioritise their needs and develop a costed plan for their community which will ensure sustainable service delivery into the future. Our study highlights the complexities of decision making in rural communities. It is important to ensure that when communities participate in health care planning that the outcomes are practical, feasible and sustainable.

Keywords: community participation, sustainable health planning, Remote Services Futures, rural communities

Procedia PDF Downloads 540
13993 Improvement of the Reliability and the Availability of a Production System

Authors: Lakhoua Najeh

Abstract:

Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.

Keywords: production system, diagnosis, SADT method, FMECA method

Procedia PDF Downloads 143
13992 Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Slide Profile

Authors: Orhan Kurtuluş, Cüneyt Yavuz

Abstract:

The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods.

Keywords: control unit design, end of line, modular design, sliding door system

Procedia PDF Downloads 446
13991 Advocacy for Increasing Health Care Budget in Parepare City with DALY Approach: Case Study on Improving Public Health Insurance Budget

Authors: Kasman, Darmawansyah, Alimin Maidin, Amran Razak

Abstract:

Background: In decentralization, advocacy is needed to increase the health budget in Parepare District. One of the advocacy methods recommended by the World Bank is the economic loss approach. Methods: This research is observational in the field of health economics that contributes directly to the magnitude of the economic loss of the community and the government and provides advocacy to the executive and legislative to see the harm it causes. Results: The research results show the amount of direct cost, which consists of household expenditure for transport Rp.295,865,500. Indirect Cost of YLD of Rp.14.688.000, and YLL of Rp.28.986.336.00, so the amount of DALY is Rp.43.674.336.000. The total economic loss of Rp.43.970.201.500. These huge economic losses can be prevented by increasing the allocation of health budgets for promotive and preventive efforts and expanding the coverage of health insurance for the community. Conclusion: There is a need to advocate the executive and legislative about the importance of guarantee on public health financing by conducting studies in terms of economic losses so that all strategic alliances believe that health is an investment.

Keywords: advocacy, economic lost, health insurance, economic losses

Procedia PDF Downloads 117
13990 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: blast phenomenon, experimental methods, material models, numerical methods

Procedia PDF Downloads 158
13989 Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement

Authors: Zhiqiang Cheng, Qingliang He, Lu Li, Jie Ren

Abstract:

The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement.

Keywords: frost heave, pipeline, stress analysis, thaw settlement

Procedia PDF Downloads 188
13988 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 328
13987 Studying the Effect of Reducing Thermal Processing over the Bioactive Composition of Non-Centrifugal Cane Sugar: Towards Natural Products with High Therapeutic Value

Authors: Laura Rueda-Gensini, Jader Rodríguez, Juan C. Cruz, Carolina Munoz-Camargo

Abstract:

There is an emerging interest in botanicals and plant extracts for medicinal practices due to their widely reported health benefits. A large variety of phytochemicals found in plants have been correlated with antioxidant, immunomodulatory, and analgesic properties, which makes plant-derived products promising candidates for modulating the progression and treatment of numerous diseases. Non-centrifugal cane sugar (NCS), in particular, has been known for its high antioxidant and nutritional value, but composition-wise variability due to changing environmental and processing conditions have considerably limited its use in the nutraceutical and biomedical fields. This work is therefore aimed at assessing the effect of thermal exposure during NCS production over its bioactive composition and, in turn, its therapeutic value. Accordingly, two modified dehydration methods are proposed that employ: (i) vacuum-aided evaporation, which reduces the necessary temperatures to dehydrate the sample, and (ii) window refractance evaporation, which reduces thermal exposure time. The biochemical composition of NCS produced under these two methods was compared to traditionally-produced NCS by estimating their total polyphenolic and protein content with Folin-Ciocalteu and Bradford assays, as well as identifying the major phenolic compounds in each sample via HPLC-coupled mass spectrometry. Their antioxidant activities were also compared as measured by their scavenging potential of ABTS and DPPH radicals. Results show that the two modified production methods enhance polyphenolic and protein yield in resulting NCS samples when compared to traditional production methods. In particular, reducing employed temperatures with vacuum-aided evaporation demonstrated to be superior at preserving polyphenolic compounds, as evidenced both in the total and individual polyphenol concentrations. However, antioxidant activities were not significantly different between these. Although additional studies should be performed to determine if the observed compositional differences affect other therapeutic activities (e.g., anti-inflammatory, analgesic, and immunoprotective), these results suggest that reducing thermal exposure holds great promise for the production of natural products with enhanced nutritional value.

Keywords: non-centrifugal cane sugar, polyphenolic compounds, thermal processing, antioxidant activity

Procedia PDF Downloads 93
13986 Algerian Literature Written in English: A Comparative Analysis of Four Novels and Their Historical, Cultural, and Identity Themes

Authors: Wafa Nouari

Abstract:

This study compares four novels written in English by Algerian writers: Donkey Heart Monkey Mind by Djaffar Chetouane, Pebble in the River by Noufel Bouzeboudja, Sophia in the White City by Belkacem Mezghouchene, and The Inner Light of Darkness by Iheb Kharab. It applies comparative research methods and cultural studies as the literary theory to analyze how these novels depict Algeria’s culture, history, and identity through their genre, style, tone, perspective, and structure. It identifies some common themes shared by them, such as the quest for freedom and dignity in a context of oppression and colonialism and the use of storytelling, imagination, and creativity as coping mechanisms for trauma and adversity. It also highlights their differences in terms of style, genre, setting, period, and perspectives. It concludes that these novels offer rich and diverse insights into Algeria and its multifaceted reality. It also discusses some limitations and challenges related to Algerian literature in English and suggests some directions for future research.

Keywords: Algeri an literature in English, comparative research methods, cultural studies, diversity and complexity

Procedia PDF Downloads 140
13985 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt

Authors: Moustafa Osman

Abstract:

Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.

Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning

Procedia PDF Downloads 376
13984 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.

Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline

Procedia PDF Downloads 86
13983 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 127
13982 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework

Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise

Abstract:

The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.

Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D

Procedia PDF Downloads 174
13981 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 416
13980 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 62
13979 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 285
13978 Risk Management in Islamic Banks: A Case Study of the Faisal Islamic Bank of Egypt

Authors: Mohamed Saad Ahmed Hussien

Abstract:

This paper discusses the risk management in Islamic banks and aims to determine the difference in the practices and methods of risk management in those banks compared to the conventional banks, and to make a case study of the biggest Islamic bank in Egypt (Faisal Islamic Bank of Egypt) to identify the most important financial risks faced and how to manage those risks. It was found that Islamic banks face two types of risks. The first type is similar to the risks in conventional banks; the second type is the additional risks which facing the Islamic banks only as a result of some Islamic modes of financing. With regard to the risk management, Islamic banks such as conventional banks applied the regulatory rules issued by the Central Banks and the Basel Committee; Islamic banks also applied the instructions and procedures issued by the Islamic Financial Services Board (IFSB). Also, Islamic banks are similar to the conventional banks in the practices and methods which they use to manage the risks. And there are some factors that may affect the risk management in Islamic banks, such as the size of the bank and the efficiency of the administration and the staff of the bank.

Keywords: conventional banks, Faisal Islamic Bank of Egypt, Islamic banks, risk management

Procedia PDF Downloads 461