Search results for: omics data analysis
40695 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States
Authors: Ankur P. Sati, Manju Mohan
Abstract:
The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.Keywords: smog, farmfires, AOD, remote sensing
Procedia PDF Downloads 24440694 Descriptive Analysis of Community-Based Needs among Asylum Seekers in New England before and after COVID-19
Authors: Viknesh Kasthuri, Victoria Angenent-Mari, Jade Wexler
Abstract:
The COVID-19 pandemic dramatically altered the landscape of asylum medicine. Brown Human Rights Asylum Clinic (BHRAC) is a medical-student-run asylum clinic that provides pro-bono medical evaluations and forensic affidavits for individuals seeking asylum in New England. After the outbreak of COVID-19 in March 2020, BHRAC experienced numerous changes both in the number of clients requesting services as well as in the resource needs of these clients. Uniquely, BHRAC assesses the needs of clients during their affidavit interview and seeks to address these needs by connecting clients to local community organizations and resources. Data regarding the specific needs of clients range from 2019-present day. Analysis of internal BHRAC’s internal data suggested a small increase in requests for assistance with light and gas (from 5% of total resource requests pre-COVID to 11%), as well as a decrease in requests for mental health services (from 20% of resources pre-COVID to 13% post-COVID). Furthermore, BHRAC witnessed a decline in clinic volume during the second half of 2020. In short, our data suggest that the pandemic affected asylum seekers' access to medico-legal services and the resources they need. Future research with larger sample sizes and in other geographic locations is required to determine the holistic impact of the COVID-19 pandemic on asylum seekers.Keywords: asylum clinic, asylum medicine, COVID, social determinants of health
Procedia PDF Downloads 10340693 Data Acquisition System for Automotive Testing According to the European Directive 2004/104/EC
Authors: Herminio Martínez-García, Juan Gámiz, Yolanda Bolea, Antoni Grau
Abstract:
This article presents an interactive system for data acquisition in vehicle testing according to the test process defined in automotive directive 2004/104/EC. The project has been designed and developed by authors for the Spanish company Applus-LGAI. The developed project will result in a new process, which will involve the creation of braking cycle test defined in the aforementioned automotive directive. It will also allow the analysis of new vehicle features that was not feasible, allowing an increasing interaction with the vehicle. Potential users of this system in the short term will be vehicle manufacturers and in a medium term the system can be extended to testing other automotive components and EMC tests.Keywords: automotive process, data acquisition system, electromagnetic compatibility (EMC) testing, European Directive 2004/104/EC
Procedia PDF Downloads 33840692 Integration of Resistivity and Seismic Refraction Using Combine Inversion for Ancient River Findings at Sungai Batu, Lembah Bujang, Malaysia
Authors: Rais Yusoh, Rosli Saad, Mokhtar Saidin, Fauzi Andika, Sabiu Bala Muhammad
Abstract:
Resistivity and seismic refraction profiling have become a common method in pre-investigations for visualizing subsurface structure. The integration of the methods could reduce an interpretation ambiguity. Both methods have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was existed and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both methods by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the ancient river. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis provides an additional technique for interpretation such as an alluvium, which can have strong influence on the ancient river findings.Keywords: ancient river, combine inversion, resistivity, seismic refraction
Procedia PDF Downloads 33040691 Analysis of the Statistical Characterization of Significant Wave Data Exceedances for Designing Offshore Structures
Authors: Rui Teixeira, Alan O’Connor, Maria Nogal
Abstract:
The statistical theory of extreme events is progressively a topic of growing interest in all the fields of science and engineering. The changes currently experienced by the world, economic and environmental, emphasized the importance of dealing with extreme occurrences with improved accuracy. When it comes to the design of offshore structures, particularly offshore wind turbines, the importance of efficiently characterizing extreme events is of major relevance. Extreme events are commonly characterized by extreme values theory. As an alternative, the accurate modeling of the tails of statistical distributions and the characterization of the low occurrence events can be achieved with the application of the Peak-Over-Threshold (POT) methodology. The POT methodology allows for a more refined fit of the statistical distribution by truncating the data with a minimum value of a predefined threshold u. For mathematically approximating the tail of the empirical statistical distribution the Generalised Pareto is widely used. Although, in the case of the exceedances of significant wave data (H_s) the 2 parameters Weibull and the Exponential distribution, which is a specific case of the Generalised Pareto distribution, are frequently used as an alternative. The Generalized Pareto, despite the existence of practical cases where it is applied, is not completely recognized as the adequate solution to model exceedances over a certain threshold u. References that set the Generalised Pareto distribution as a secondary solution in the case of significant wave data can be identified in the literature. In this framework, the current study intends to tackle the discussion of the application of statistical models to characterize exceedances of wave data. Comparison of the application of the Generalised Pareto, the 2 parameters Weibull and the Exponential distribution are presented for different values of the threshold u. Real wave data obtained in four buoys along the Irish coast was used in the comparative analysis. Results show that the application of the statistical distributions to characterize significant wave data needs to be addressed carefully and in each particular case one of the statistical models mentioned fits better the data than the others. Depending on the value of the threshold u different results are obtained. Other variables of the fit, as the number of points and the estimation of the model parameters, are analyzed and the respective conclusions were drawn. Some guidelines on the application of the POT method are presented. Modeling the tail of the distributions shows to be, for the present case, a highly non-linear task and, due to its growing importance, should be addressed carefully for an efficient estimation of very low occurrence events.Keywords: extreme events, offshore structures, peak-over-threshold, significant wave data
Procedia PDF Downloads 27240690 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3140689 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 8740688 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera
Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl
Abstract:
Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition
Procedia PDF Downloads 10340687 Citation Analysis of New Zealand Court Decisions
Authors: Tobias Milz, L. Macpherson, Varvara Vetrova
Abstract:
The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.Keywords: case citation network, citation analysis, network analysis, Neo4j
Procedia PDF Downloads 10640686 The Population Death Model and Influencing Factors from the Data of The "Sixth Census": Zhangwan District Case Study
Authors: Zhou Shangcheng, Yi Sicen
Abstract:
Objective: To understand the mortality patterns of Zhangwan District in 2010 and provide the basis for the development of scientific and rational health policy. Methods: Data are collected from the Sixth Census of Zhangwan District and disease surveillance system. The statistical analysis include death difference between age, gender, region and time and the related factors. Methods developed for the Global Burden of Disease (GBD) Study by the World Bank and World Health Organization (WHO) were adapted and applied to Zhangwan District population health data. DALY rate per 1,000 was calculated for varied causes of death. SPSS 16 is used by statistic analysis. Results: From the data of death population of Zhangwan District we know the crude mortality rate was 6.03 ‰. There are significant differences of mortality rate in male and female population which was respectively 7.37 ‰ and 4.68 ‰. 0 age group population life expectancy in Zhangwan District in 2010 was 78.40 years old(Male 75.93, Female 81.03). The five leading causes of YLL in descending order were: cardiovascular diseases(42.63DALY/1000), malignant neoplasm (23.73DALY/1000), unintentional injuries (5.84DALY/1000), Respiratory diseases(5.43 DALY/1000), Respiratory infections (2.44DALY/1000). In addition, there are strong relation between the marital status , educational level and mortality in some to a certain extend. Conclusion Zhangwan District, as city level, is at lower mortality levels. The mortality of the total population of Zhangwan District has a downward trend and life expectancy is rising.Keywords: sixth census, Zhangwan district, death level differences, influencing factors, cause of death
Procedia PDF Downloads 26940685 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa
Authors: Sanele E. Nene L., Lia M. Hewitt
Abstract:
Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.Keywords: ambivalence, embracing, Artificial intelligence, public hospital
Procedia PDF Downloads 7840684 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 25640683 Analisys of Cereal Flours by Fluorescence Spectroscopy and PARAFAC
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Rapid and sensitive analytical technologies for food analysis are needed to respond to the growing public interest in food quality and safety. In this context, fluorescence spectroscopy offers several inherent advantages for the characterization of food products: high sensitivity, low price, objective, relatively fast and non-destructive. The objective of this work was to investigate the potential of fluorescence spectroscopy coupled with multi-way technique for characterization of cereal flours. Fluorescence landscape also known as excitation-emission matrix (EEM) spectroscopy utilizes multiple-color illumination, with the full fluorescence spectrum recorded for each excitation wavelength. EEM was measured on various types of cereal flours (wheat, oat, barley, rye, corn, buckwheat and rice). Obtained spectra were analyzed using PARAllel FACtor analysis (PARAFAC) in order to decompose the spectra and identify underlying fluorescent components. Results of the analysis indicated the presence of four fluorophores in cereal flours. It has been observed that relative concentration of fluorophores varies between different groups of flours. Based on these findings we can conclude that application of PARAFAC analysis on fluorescence data is a good foundation for further qualitative analysis of cereal flours.Keywords: cereals, fluors, fluorescence, PARAFAC
Procedia PDF Downloads 66440682 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation
Authors: Calorine Twebaze, Jesca Balinga
Abstract:
Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches
Procedia PDF Downloads 5640681 Linking Work-Family Enrichment and Innovative Workplace Behavior: The Mediating Role of Positive Emotions
Authors: Nidhi Bansal, Upasna Agarwal
Abstract:
Innovation is a key driver for economic growth and well-being of developed as well as emerging economies like India. Very few studies examined the relationship between IWB and work-family enrichment. Therefore, the present study examines the relationship between work-family enrichment (WFE) and innovative workplace behavior (IWB) and whether it is mediated by positive emotions. Social exchange theory and broaden and build theory explain the proposed relationships. Data were collected from 250 full time dual working parents in different Indian organizations through a survey questionnaire. Snowball technique was used for approaching respondents. Mediation analysis was assessed through PROCESS macro (Hayes, 2012) in SPSS. With correlational analysis, it was explored that all three variables were significantly and positively related. Analysis suggests that work-family enrichment is significantly related to innovative workplace behavior and this relationship is partially mediated by positive emotions. A cross-sectional design, use of self-reported questions and data collected only from dual working parents are few limitations of the study. This is one of the few studies to examine the innovative workplace behavior in response to work-family enrichment and first attempt to examine the mediation effect of emotions between these two variables.Keywords: dual working parents, emotions, innovative workplace behavior, work-family enrichment
Procedia PDF Downloads 25640680 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices
Authors: Nathakhun Wiroonsri
Abstract:
There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition
Procedia PDF Downloads 10240679 Climate Change and Landslide Risk Assessment in Thailand
Authors: Shotiros Protong
Abstract:
The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand
Procedia PDF Downloads 56340678 Characteristics and Feature Analysis of PCF Labeling among Construction Materials
Authors: Sung-mo Seo, Chang-u Chae
Abstract:
The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.Keywords: carbon labeling, LCI DB, building materials, life cycle assessment
Procedia PDF Downloads 41940677 Numerical Modelling of a Vacuum Consolidation Project in Vietnam
Authors: Nguyen Trong Nghia, Nguyen Huu Uy Vu, Dang Huu Phuoc, Sanjay Kumar Shukla, Le Gia Lam, Nguyen Van Cuong
Abstract:
This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches.Keywords: numerical modelling, prefabricated vertical drains, vacuum consolidation, soft soil
Procedia PDF Downloads 22840676 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users
Authors: Gabriel Gomez
Abstract:
The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.Keywords: big data, library information science, behaviorism, librarianship
Procedia PDF Downloads 38140675 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria
Authors: Kemi Olalekan Oduntan
Abstract:
This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth
Procedia PDF Downloads 36240674 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6040673 Problems Confronting the Teaching of Sex Education in Some Selected Secondary Schools in the Akoko Region of Ondo State, Nigeria
Authors: Jimoh Abiodun Alaba
Abstract:
Context: In many traditional African societies, sex education is often considered a taboo topic. However, the importance of sex education is becoming increasingly evident. This study aims to investigate the challenges faced in teaching sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Research Aim: The aim of this study is to identify and examine the problems confronting the teaching of sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Methodology: The study utilized a multi-stage sampling method. The first stage involved a purposive selection of ten (10) secondary schools in the Akoko region of Ondo State, while the second stage was a random selection of twenty (20) students, each in the selected secondary schools of the study area. This makes a total of two (200) hundred students that were considered for the survey. Descriptive analysis using percentages was employed to analyze the collected data. Factor analysis was also used to identify the most significant problems. Findings: The study revealed that sex education has been neglected in the sampled secondary schools due to traditional African beliefs that do not support the teaching and learning of this subject. Furthermore, there was evidence to suggest that parents also displayed reluctance towards the teaching of sex education, fearing that it might expose students to inappropriate behavior. Consequently, students were deprived of this essential aspect of education necessary for self-awareness and development. Theoretical Importance: This study contributes to the understanding of the challenges faced in teaching sex education in traditional African societies, specifically in the selected secondary schools in the Akoko region of Ondo state, Nigeria. Data Collection: Data were collected through the administration of 200 questionnaires in ten selected secondary schools. Additionally, information was gathered from federal, state, and local government authorities. Analysis Procedures: The collected data were analyzed using descriptive analysis, employing percentage calculations for better interpretation. Furthermore, factor analysis was conducted to isolate the most significant problems identified. Conclusion: The study concludes that sex education in the sampled secondary schools in the Akoko region of Ondo state, Nigeria, has suffered neglect due to traditional African beliefs and parental concerns. Consequently, students are denied an important aspect of education necessary for their self-awareness and development. Recommendations are made to change the negative perception of sex education, enrich the curriculum, and employ qualified personnel for its teaching. Additionally, it is suggested that sex education should be integrated with moral instruction.Keywords: African traditional belief, sex, sex education, sexual misdemeanor, morality
Procedia PDF Downloads 8340672 Drought Risk Analysis Using Neural Networks for Agri-Businesses and Projects in Lejweleputswa District Municipality, South Africa
Authors: Bernard Moeketsi Hlalele
Abstract:
Drought is a complicated natural phenomenon that creates significant economic, social, and environmental problems. An analysis of paleoclimatic data indicates that severe and extended droughts are inevitable part of natural climatic circle. This study characterised drought in Lejweleputswa using both Standardised Precipitation Index (SPI) and neural networks (NN) to quantify and predict respectively. Monthly 37-year long time series precipitation data were obtained from online NASA database. Prior to the final analysis, this dataset was checked for outliers using SPSS. Outliers were removed and replaced by Expectation Maximum algorithm from SPSS. This was followed by both homogeneity and stationarity tests to ensure non-spurious results. A non-parametric Mann Kendall's test was used to detect monotonic trends present in the dataset. Two temporal scales SPI-3 and SPI-12 corresponding to agricultural and hydrological drought events showed statistically decreasing trends with p-value = 0.0006 and 4.9 x 10⁻⁷, respectively. The study area has been plagued with severe drought events on SPI-3, while on SPI-12, it showed approximately a 20-year circle. The concluded the analyses with a seasonal analysis that showed no significant trend patterns, and as such NN was used to predict possible SPI-3 for the last season of 2018/2019 and four seasons for 2020. The predicted drought intensities ranged from mild to extreme drought events to come. It is therefore recommended that farmers, agri-business owners, and other relevant stakeholders' resort to drought resistant crops as means of adaption.Keywords: drought, risk, neural networks, agri-businesses, project, Lejweleputswa
Procedia PDF Downloads 12540671 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya
Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse
Abstract:
Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data
Procedia PDF Downloads 13840670 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 10740669 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 9440668 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 9340667 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 2240666 Feasibility Study for the Implementation of a Condition-Based Maintenance System in the UH-60 Helicopters
Authors: Santos Cabrera, Halbert Yesid, Moncada Nino, Alvaro Fernando, Rincon Cuta, Yeisson Alexis
Abstract:
The present work evaluates the feasibility of implementing a health and use monitoring system (HUMS), based on vibration analysis as a condition-based maintenance program for the UH60L 'Blackhawk' helicopters. The mixed approach used consists of contributions from national and international experts, the analysis of data extracted from the software (Meridium), the correlation of variables derived from the diagnosis of availability, the development, and application of the HUMS system, the evaluation of the latter through of the use of instruments designed for the collection of information using the DELPHI method and data capture with the device installed in the helicopter studied. The results obtained in the investigation reflect the context of maintenance in aerial operations, a reduction of operation and maintenance costs of over 2%, better use of human resources, improvement in availability (5%), and fulfillment of the aircraft’s security standards, enabling the implementation of the monitoring system (HUMS) in the condition-based maintenance program. New elements are added to the study of maintenance based on condition -specifically, in the determination of viability based on qualitative and quantitative data according to the methodology. The use of condition-based maintenance will allow organizations to adjust and reconfigure their strategic, logistical, and maintenance capabilities, aligning them with their strategic objectives of responding quickly and adequately to changes in the environment and operational requirements.Keywords: air transportation sustainability, HUMS, maintenance based condition, maintenance blackhawk capability
Procedia PDF Downloads 156