Search results for: monitoring network optimization
8891 Urban Road Network Connectivity and Accessibility Analysis Using RS and GIS: A Case Study of Chandannagar City
Authors: Joy Ghosh, Debasmita Biswas
Abstract:
The road network of any area is the most important indicator of regional planning. For proper utilization of urban road networks, the structural parameters such as connectivity and accessibility should be analyzed and evaluated. This paper aims to explain the application of GIS on urban road network connectivity and accessibility analysis with a case study of Chandannagar City. This paper has been made to analyze the road network connectivity through various connectivity measurements like the total number of nodes and links, Cyclomatic Number, Alpha Index, Beta Index, Gamma index, Eta index, Pi index, Theta Index, and Aggregated Transport Score, Road Density based on existing road network in Chandannagar city in India. Accessibility is measured through the shortest Path Matrix, associate Number, and Shimbel Index. Various urban services, such as schools, banks, Hospitals, petrol pumps, ATMs, police stations, theatres, parks, etc., are considered for the accessibility analysis for each ward. This paper also highlights the relationship between urban land use/ land cover (LULC) and urban road network and population density using various spatial and statistical measurements. The datasets were collected through a field survey of 33 wards of the Chandannagar Municipal Corporation area, and the secondary data were collected through an open street map and satellite image of LANDSAT8 OLI & TIRS from USGS. Chandannagar was actually once a French colony, and at that time, various sort of planning was applied, but now Chandannagar city continues to grow haphazardly because that city is facing some problems; the knowledge gained from this paper helps to create a more efficient and accessible road network. Therefore, it would be suggested that some wards need to improve their connectivity and accessibility for the future growth and development of Chandannagar.Keywords: accessibility, connectivity, transport, road network
Procedia PDF Downloads 708890 Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site
Authors: Babatunde Femi Bakare
Abstract:
Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations.Keywords: boreholes, contamination, entrenchment, groundwater quality, VIP latrines
Procedia PDF Downloads 4088889 Visualization of Malaysia Universities Websites Based On Social Network Analysis
Authors: N. A. Ismail, Abdul Arif, Sharul Hafiz, Lu S. J., Tham W. S., Wong S. K.
Abstract:
This paper investigates the visulization of Malaysia universities websites. Twenty (20) public universities websites in Malaysia has been chosen as samples to explore and visualize the link relationship between their academic websites using social network analysis methods such as inlink, degree, weight, betweenness and modularity class. All of the connection and relation demonstrate the power to influence, comprehensive strength and also the variety of subject types that are present in universities. The experimental results also show that University Malaysia Sabah (UMS) is the biggest back links provider.Keywords: academic websites, link analysis, social network analysis, experimental result
Procedia PDF Downloads 4708888 Use of Remote Sensing for Seasonal and Temporal Monitoring in Wetlands: A Case Study of Akyatan Lagoon
Authors: A. Cilek, S. Berberoglu, A. Akin Tanriover, C. Donmez
Abstract:
Wetlands are the areas which have important effects and functions on protecting human life, adjust to nature, and biological variety, besides being potential exploitation sources. Observing the changes in these sensitive areas is important to study for data collecting and correct planning for the future. Remote sensing and Geographic Information System are being increasingly used for environmental studies such as biotope mapping and habitat monitoring. Akyatan Lagoon, one of the most important wetlands in Turkey, has been facing serious threats from agricultural applications in recent years. In this study, seasonal and temporal monitoring in wetlands system are determined by using remotely sensed data and Geographic Information Systems (GIS) between 1985 and 2015. The research method is based on classifying and mapping biotopes in the study area. The natural biotope types were determined as coastal sand dunes, salt marshes, river beds, coastal woods, lakes, lagoons.Keywords: biotope mapping, GIS, remote sensing, wetlands
Procedia PDF Downloads 3918887 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 838886 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 1478885 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 5428884 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)
Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh
Abstract:
Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment
Procedia PDF Downloads 3718883 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 3928882 The Fibonacci Network: A Simple Alternative for Positional Encoding
Authors: Yair Bleiberg, Michael Werman
Abstract:
Coordinate-based Multi-Layer Perceptrons (MLPs) are known to have difficulty reconstructing high frequencies of the training data. A common solution to this problem is Positional Encoding (PE), which has become quite popular. However, PE has drawbacks. It has high-frequency artifacts and adds another hyper hyperparameter, just like batch normalization and dropout do. We believe that under certain circumstances, PE is not necessary, and a smarter construction of the network architecture together with a smart training method is sufficient to achieve similar results. In this paper, we show that very simple MLPs can quite easily output a frequency when given input of the half-frequency and quarter-frequency. Using this, we design a network architecture in blocks, where the input to each block is the output of the two previous blocks along with the original input. We call this a Fibonacci Network. By training each block on the corresponding frequencies of the signal, we show that Fibonacci Networks can reconstruct arbitrarily high frequencies.Keywords: neural networks, positional encoding, high frequency intepolation, fully connected
Procedia PDF Downloads 978881 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels
Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen
Abstract:
The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.Keywords: Fuzzy ANP, hostel, organizational performance, strategy management
Procedia PDF Downloads 1988880 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2268879 Bank ATM Monitoring System Using IR Sensor
Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari
Abstract:
This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver
Procedia PDF Downloads 3098878 Packet Fragmentation Caused by Encryption and Using It as a Security Method
Authors: Said Rabah Azzam, Andrew Graham
Abstract:
Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch.Keywords: fragmentation, encryption, security, switch
Procedia PDF Downloads 3328877 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4428876 Analysis on the Copyright Protection Dilemma of Webcast in 'Internet Plus' Era
Authors: Yi Yang
Abstract:
In the era of 'Internet plus', the rapid development of webcast has posed new challenges to the intellectual property law. Meanwhile, traditional copyright protection has also exposed the existing theoretical imbalance in webcast. Through the analysis of the outstanding problems in the copyright protection of the network live broadcast, this paper points out that the main causes of the problems are the unclear nature of the copyright of the network live broadcast, the copyright protection system of the game network live broadcast has not yet been constructed, and the copyright infringement of the pan entertainment live broadcast is mostly, and so on. Based on the current practice, this paper puts forward the specific thinking of the protection path of online live broadcast copyright. First of all, to provide a reasonable judicial solution for a large number of online live copyright cases, we need to integrate the right scope and regulatory behavior of broadcasting right and information network communication right. Secondly, in order to protect the rights of network anchors, the webcast should be regarded as works. Thirdly, in order to protect the copyright of webcast and prevent the infringement of copyright by webcast, the webcast platform will be used as an intermediary to provide solutions for solving the judicial dilemma. In the era of 'Internet plus', it is a theoretical attempt to explore the protection and method of copyright protection on webcast, which has positive guiding significance for judicial practice.Keywords: 'Internet Plus' era, webcast, copyright, protection dilemma
Procedia PDF Downloads 1118875 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex
Procedia PDF Downloads 5318874 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3148873 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification
Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong
Abstract:
It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization
Procedia PDF Downloads 838872 Monitoring Trends of Science and Technology Policies in South Korea
Authors: Jeonghwan Jeon
Abstract:
As the science and technology(S&T) has been rapidly advanced, the national government attempts to reflect changes in the S&T for promoting public R&D activities and economic development. Amongst others, due to the rapid advances and changes of S&T, it becomes important to monitor the trends of S&T policies for formulating the new policy and investigating promising S&T fields. Thus, this paper aims to trace the national S&T policies during this decade for monitoring the change of major S&T fields in the case of South Korea. As one of the organization for S&T policy in South Korea, the National Science and Technology Council (NSTC) has been established to coordinate inter-ministerial policies and programs and to determine all of the national and public S&T policy of South Korea. In this regard, the items on national S&T policy determined by the NSTC are useful for understanding the needs for major S&T fields and adapting to the rapid change of S&T. To this end, we first gathered the data on 512 items on the S&T agenda from 1999 to 2013. Based on these items, the trend of S&T policies is monitored and the major S&T fields are derived. Differences of policy purposes between S&T fields are identified to provide guideline for policy making such as budget allocation or investment promotion as well.Keywords: science and technology policy, trends, S&T field, monitoring
Procedia PDF Downloads 3218871 The Event of Extreme Precipitation Occurred in the Metropolitan Mesoregion of the Capital of Para
Authors: Natasha Correa Vitória Bandeira, Lais Cordeiro Soares, Claudineia Brazil, Luciane Teresa Salvi
Abstract:
The intense rain event that occurred between February 16 and 18, 2018, in the city of Barcarena in Pará, located in the North region of Brazil, demonstrates the importance of analyzing this type of event. The metropolitan mesoregion of Belem was severely punished by rains much above the averages normally expected for that time of year; this phenomenon affected, in addition to the capital, the municipalities of Barcarena, Murucupi and Muruçambá. Resulting in a great flood in the rivers of the region, whose basins were affected with great intensity of precipitation, causing concern for the local population because in this region, there are located companies that accumulate ore tailings, and in this specific case, the dam of any of these companies, leaching the ore to the water bodies of the Murucupi River Basin. This article aims to characterize this phenomenon through a special analysis of the distribution of rainfall, using data from atmospheric soundings, satellite images, radar images and data from the GPCP (Global Precipitation Climatology Project), in addition to rainfall stations located in the study region. The results of the work demonstrated a dissociation between the data measured in the meteorological stations and the other forms of analysis of this extreme event. Monitoring carried out solely on the basis of data from pluviometric stations is not sufficient for monitoring and/or diagnosing extreme weather events, and investment by the competent bodies is important to install a larger network of pluviometric stations sufficient to meet the demand in a given region.Keywords: extreme precipitation, great flood, GPCP, ore dam
Procedia PDF Downloads 1068870 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.Keywords: search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization
Procedia PDF Downloads 3708869 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 2908868 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 3248867 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89
Authors: A. Chatel, I. S. Torreguitart, T. Verstraete
Abstract:
The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness
Procedia PDF Downloads 1098866 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 428865 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks
Authors: Riyadh Alsultani, Ali Majdi
Abstract:
It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design
Procedia PDF Downloads 918864 A Comparative and Critical Analysis of Some Routing Protocols in Wireless Sensor Networks
Authors: Ishtiaq Wahid, Masood Ahmad, Nighat Ayub, Sajad Ali
Abstract:
Lifetime of a wireless sensor network (WSN) is directly proportional to the energy consumption of its constituent nodes. Routing in wireless sensor network is very challenging due its inherit characteristics. In hierarchal routing the sensor filed is divided into clusters. The cluster-heads are selected from each cluster, which forms a hierarchy of nodes. The cluster-heads are used to transmit the data to the base station while other nodes perform the sensing task. In this way the lifetime of the network is increased. In this paper a comparative study of hierarchal routing protocols are conducted. The simulation is done in NS-2 for validation.Keywords: WSN, cluster, routing, sensor networks
Procedia PDF Downloads 4778863 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 998862 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 142