Search results for: distributed artificial intelligence
3285 Benefits of Therapeutic Climbing on Multiple Components of Attention in Attention Deficit Hyperactivity Disorder Children
Authors: Elaheh Hosseini, Otmar Bock, Monika Thomas
Abstract:
The purpose of the present study was to determine the effect of climbing therapy on the components of attention of children with attention-deficit hyperactivity disorder (ADHD). Forty children with ADHD were assigned to either an intervention group or a control group. The exercise group participated in a climbing therapy program for ten weeks, whereas no intervention was administered to the control group. All two groups were then assessed with the same battery of attention tests used in our earlier study. We found that compared to the ‘intervention’ group, performance was higher in the ‘control’ group on tests of sustained, divided and distributed attention, on all four tests. The intervention group showed a significant improvement in components of attention after ten weeks. From this we conclude that climbing therapy can improve the attention of children with ADHD and can be considered as a promising intervention and a standalone treatment for children with ADHD.Keywords: ADHD, climbing therapy, distributed attention, divided attention, selective attention, sustained attention
Procedia PDF Downloads 1663284 A Novel Approach to Design and Implement Context Aware Mobile Phone
Authors: G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability
Procedia PDF Downloads 3703283 Analysis of Moving Loads on Bridges Using Surrogate Models
Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna
Abstract:
The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models
Procedia PDF Downloads 1053282 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 1343281 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3863280 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 663279 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia
Authors: Abdelhafid Zenati, Mohamed Tadjine
Abstract:
The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space
Procedia PDF Downloads 2533278 The Investigation of Psychological Motives of Creative Abilities in the Omani Musical Intelligence
Authors: Mohammed Talib Alkiyumi
Abstract:
The Sultanate of Oman is characterized by a huge musical heritage that remains mostly preserved. 142 different traditional musical genres and styles (funun) have been registered in the Sultanate. This large number is a unique phenomenon that is worthy of attention and study. These genres and styles are different from others in their origins, rhythms, melodies, poetry, dance movements, etc. Certainly, Oman is exposed to other cultures and there is a variety of ethnicities in the Sultanate; however, this musical diversity is mostly an Omani product. This paper investigates the psychological motives behind Omani musical creativity. This qualitative study is based on relevant documents, as well as an analysis of Omani performance in those genres through documentary films and direct observations. Musical genres are performed in social events such as weddings and celebrations; however, research has shown psychological motives that motivated Omani people to create these various genres, such as provocation of enthusiasm, meditation, religious motivations, poetic competition, and emotional motivation. For each motive, musical genres have been presented.Keywords: traditional musical, creativity, musical intelligence, Sultanate of Oman
Procedia PDF Downloads 1073277 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision
Authors: Arth Bohra, Marwa Mahmoud
Abstract:
In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.Keywords: soccer, corner kicks, AI, computer vision
Procedia PDF Downloads 1793276 Smart Growth Through Innovation Programs: Challenges and Opportunities
Authors: Hanadi Mubarak Al-Mubaraki, Michael Busler
Abstract:
Innovation is the powerful tools for economic growth and diversification, which lead to smart growth. The objective of this paper is to identify the opportunities and challenges of innovation programs discuss and analyse the implementation of the innovation program in the United States (US) and United Kingdom (UK). To achieve the objectives, the research used a mixed methods approach, quantitative (survey), and qualitative (multi-case study) to examine innovation best practices in developed countries. In addition, the selection of 4 interview case studies of innovation organisations based on the best practices and successful implementation worldwide. The research findings indicated the two challenges such as 1) innovation required business ecosystem support to deliver innovation outcomes such as new product and new services, and 2) foster the climate of innovation &entrepreneurship for economic growth and diversification. Although the two opportunities such as 1) sustainability of the innovation events which lead smart growth, and 2) establish the for fostering the artificial intelligence hub entrepreneurship networking at multi-levels. The research adds value to academicians and practitioners such as government, funded organizations, institutions, and policymakers. The authors aim to conduct future research a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The Originality of This study contributes to current literature about the innovation best practice in developed and developing countries.Keywords: economic development, technology transfer, entrepreneurship, innovation program
Procedia PDF Downloads 1493275 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 803274 An Exploration on Competency-Based Curricula in Integrated Circuit Design
Authors: Chih Chin Yang, Chung Shan Sun
Abstract:
In this paper, the relationships between professional competences and school curricula in IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence.Keywords: IC design, curricula, competence, task, duty
Procedia PDF Downloads 3853273 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.
Procedia PDF Downloads 3193272 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach
Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert
Abstract:
Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems
Procedia PDF Downloads 1553271 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4663270 A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources
Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar
Abstract:
The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation.Keywords: pulse laser, integral transform, thermoelastic, boundary value problem
Procedia PDF Downloads 6193269 Relationship between Perceived Level of Emotional Intelligence and Organizational Role Stress of Fire Fighters in Mumbai
Authors: Payal Maheshwari, Bansari Shah
Abstract:
The research aimed to study the level of emotional intelligence (EI) and organizational role stress (ORS) of fire-fighters and the relationship between the two variables. Hundred and twenty fire-fighters were selected from different fire stations of Mumbai by purposive sampling. The firefighters who had the basic training, a minimum experience of 2 years and had been on the field during a crisis situation were selected for the study. The firefighters selected ranged from 23-58 years of age, and the number of years of experience ranged from 2 to 33 years. The findings of the study revealed that majority of the firefighters perceived themselves to be at an above average (57) and high (58) level of EI (M=429.35, SD=38.712). Domain-wise analysis disclosed that compared to self-awareness (92) and relationship management (93), more number of participants perceived themselves in the high category in the domains of self-management (108) and social management (106). Further, examination of the subdomain scores conveyed that a large number of participants rated themselves in the average level of these skills of accurate self-assessment (50), emotional self-control (50), adaptability (56) initiative (41), influence (66), change catalyst (53), and conflict management (50). With relation to the stress variable, it was found that almost half the number of the participants (59) rated themselves as having an average level of stress (M=137.44, SD=28.800). In most of the domains, majority of the participants perceived themselves as having an average level of stress, while in the domain of role isolation, self-role distance, and role ambiguity, majority of the firefighters rated themselves as having a low level of stress. A strong negative correlation (r=-.360**, p=.000) was found between EI and ORS. This study is a contribution to the literature and has implications for fire-fighters at the personal level, for the policymakers, and the fire department.Keywords: emotional intelligence, organizational role stress, firefighters, relationship
Procedia PDF Downloads 1183268 Artificial Insemination for Cattle and Carabaos in Bicol Region, Philippines: Its Implementation and Assessment
Authors: Lourdita Llanto
Abstract:
This study described and assessed the implementation of artificial insemination (AI) for cattle and carabaos in the Bicol Region, Philippines: Albay, Sorsogon and Camarines Sur. Three hundred respondents were interviewed. Results were analyzed using frequency counts, means, percentages and chi-square test. Semen samples from different stations were analyzed for motility, viability and morphology. T-test was used in semen quality evaluation. Provincial AI coordinators (PAIC) were male, averaging 59 years old, married, had college education, served in government service for 34 years, but as PAIC for 5.7 years. All had other designations. Mean AI operation was 11.33 years with annual support from the local government unit of Php76,666.67. AI technicians were males, married, with college education, and trained on AI. Problems were on mobility; inadequate knowledge of farmers in animal raising and AI; and lack of liquid nitrogen and frozen semen supply. There was 2.95 municipalities and breedable cattle/carabaos of 3,091.25 per AI technician. Mean number of artificially inseminated animals per AI technician for 2011 was 28.57 heads for carabaos and 8.64 heads for cattle. There was very low participation rate among farmers. Carabaos were 6.52 years with parity 1.53. Cattle were 5.61 years, with parity of 1.51. Semen quality significantly (p ≤ 0.05) deteriorated in normal and live sperm with storage and handling at the provincial and field stations. Breed, AI technicians practices and AI operation significantly affected conception rate. Mean conception rate was 57.62%.Keywords: artificial insemination, carabao, parity, mother tanks, frozen semen
Procedia PDF Downloads 4373267 A Scalable Media Job Framework for an Open Source Search Engine
Authors: Pooja Mishra, Chris Pollett
Abstract:
This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.Keywords: distributed jobs framework, news aggregation, video conversion, email
Procedia PDF Downloads 3023266 Digital Innovation and Business Transformation
Authors: Bisola Stella Sonde
Abstract:
Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.Keywords: business transformation, digital innovation, emerging technologies, organizational structures
Procedia PDF Downloads 723265 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 1173264 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation
Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira
Abstract:
We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification
Procedia PDF Downloads 573263 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1003262 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence
Authors: Leonie Laskowitz
Abstract:
A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness
Procedia PDF Downloads 1513261 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 1883260 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2653259 Evaluating the Use of Manned and Unmanned Aerial Vehicles in Strategic Offensive Tasks
Authors: Yildiray Korkmaz, Mehmet Aksoy
Abstract:
In today's operations, countries want to reach their aims in the shortest way due to economical, political and humanitarian aspects. The most effective way of achieving this goal is to be able to penetrate strategic targets. Strategic targets are generally located deep inside of the countries and are defended by modern and efficient surface to air missiles (SAM) platforms which are operated as integrated with Intelligence, Surveillance and Reconnaissance (ISR) systems. On the other hand, these high valued targets are buried deep underground and hardened with strong materials against attacks. Therefore, to penetrate these targets requires very detailed intelligence. This intelligence process should include a wide range that is from weaponry to threat assessment. Accordingly, the framework of the attack package will be determined. This mission package has to execute missions in a high threat environment. The way to minimize the risk which depends on loss of life is to use packages which are formed by UAVs. However, some limitations arising from the characteristics of UAVs restricts the performance of the mission package consisted of UAVs. So, the mission package should be formed with UAVs under the leadership of a fifth generation manned aircraft. Thus, we can minimize the limitations, easily penetrate in the deep inside of the enemy territory with minimum risk, make a decision according to ever-changing conditions and finally destroy the strategic targets. In this article, the strengthens and weakness aspects of UAVs are examined by SWOT analysis. And also, it revealed features of a mission package and presented as an example what kind of a mission package we should form in order to get marginal benefit and penetrate into strategic targets with the development of autonomous mission execution capability in the near future.Keywords: UAV, autonomy, mission package, strategic attack, mission planning
Procedia PDF Downloads 5533258 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4303257 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System
Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device
Procedia PDF Downloads 5483256 A Study on the Application of Generative AI Tools for Chinese Writing Feedback in Non-Fiction Writing Instruction
Authors: Stephanie Liu Lu
Abstract:
The course "University Chinese," an essential component of the curriculum in Hong Kong's higher education institutions, plays a crucial role in enhancing students' creative expression, narrative construction, argumentative prowess, and literary skills through its focus on non-fiction writing. Despite its significance, the comprehensive syllabus, coupled with limited classroom time, often restricts adequate practice opportunities and leads to delayed feedback, negatively impacting students' preparation for assessments. This paper investigates the potential of generative artificial intelligence (AI) tools, such as ChatGPT and POE, to provide personalized and immediate feedback for writing tasks. The primary goal of this research is to evaluate student receptiveness to AI-generated feedback and compare it to traditional feedback provided solely by human instructors. To achieve this, participants will be systematically divided into two groups: one receiving feedback from both instructors and AI tools, and a control group that receives feedback exclusively from instructors. The study will thoroughly analyze the revisions made to texts after receiving feedback, focusing particularly on enhancements in the quality of content and language proficiency across three dimensions: content/theme, language, and structural logic. This investigation aims to determine whether AI tools can enhance the efficiency of teaching practices, encourage autonomous learning, and significantly improve the overall quality of students' written work.Keywords: AI-generated feedback, Chinese writing, non-fiction writing, student receptiveness
Procedia PDF Downloads 8