Search results for: fracture classification
1488 Spatial Patterns of Urban Expansion in Kuwait City between 1989 and 2001
Authors: Saad Algharib, Jay Lee
Abstract:
Urbanization is a complex phenomenon that occurs during the city’s development from one form to another. In other words, it is the process when the activities in the land use/land cover change from rural to urban. Since the oil exploration, Kuwait City has been growing rapidly due to its urbanization and population growth by both natural growth and inward immigration. The main objective of this study is to detect changes in urban land use/land cover and to examine the changing spatial patterns of urban growth in and around Kuwait City between 1989 and 2001. In addition, this study also evaluates the spatial patterns of the changes detected and how they can be related to the spatial configuration of the city. Recently, the use of remote sensing and geographic information systems became very useful and important tools in urban studies because of the integration of them can allow and provide the analysts and planners to detect, monitor and analyze the urban growth in a region effectively. Moreover, both planners and users can predict the trends of the growth in urban areas in the future with remotely sensed and GIS data because they can be effectively updated with required precision levels. In order to identify the new urban areas between 1989 and 2001, the study uses satellite images of the study area and remote sensing technology for classifying these images. Unsupervised classification method was applied to classify images to land use and land cover data layers. After finishing the unsupervised classification method, GIS overlay function was applied to the classified images for detecting the locations and patterns of the new urban areas that developed during the study period. GIS was also utilized to evaluate the distribution of the spatial patterns. For example, Moran’s index was applied for all data inputs to examine the urban growth distribution. Furthermore, this study assesses if the spatial patterns and process of these changes take place in a random fashion or with certain identifiable trends. During the study period, the result of this study indicates that the urban growth has occurred and expanded 10% from 32.4% in 1989 to 42.4% in 2001. Also, the results revealed that the largest increase of the urban area occurred between the major highways after the forth ring road from the center of Kuwait City. Moreover, the spatial distribution of urban growth occurred in cluster manners.Keywords: geographic information systems, remote sensing, urbanization, urban growth
Procedia PDF Downloads 1711487 Continuity Through Best Practice. A Case Series of Complex Wounds Manage by Dedicated Orthopedic Nursing Team
Authors: Siti Rahayu, Khairulniza Mohd Puat, Kesavan R., Mohammad Harris A., Jalila, Kunalan G., Fazir Mohamad
Abstract:
The greatest challenge has been in establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively for managing wound, where they can continue to build expertise and skills. In addition, there is a growing incidence of chronic wounds and recognition of the complexity involved in caring for these patients. We would like to share 4 cases with different techniques of wound management. 1st case, 39 years old gentleman with underlying rheumatoid arthritis with chronic periprosthetic joint infection of right total knee replacement presented with persistent drainage over right knee. Patient was consulted for two stage revision total knee replacement. However, patient only agreed for debridement and retention of implant. After debridement, large medial and lateral wound was treated with Instillation Negative Pressure Wound Therapy Dressings. After several cycle, the wound size reduced, and conventional dressing was applied. 2nd case, 58 years old gentleman with underlying diabetes presented with right foot necrotizing fasciitis with gangrene of 5th toe. He underwent extensive debridement of foot with rays’ amputation of 5th toe. Post debridement patient was started on Instillation Negative Pressure Wound Therapy Dressings. After several cycle of VAC, the wound bed was prepared, and he underwent split skin graft over right foot. 3 rd case, 60 years old gentleman with underlying diabetes mellitus presented with right foot necrotizing soft tissue infection. He underwent rays’ amputation and extensive wound debridement. Upon stabilization of general condition, patient was discharge with regular wound dressing by same nurse and doctor during each visit to clinic follow up. After 6 months of follow up, the wound healed well. 4th case, 38-year-old gentleman had alleged motor vehicle accident and sustained closed fracture right tibial plateau. Open reduction and proximal tibial locking plate were done. At 2 weeks post-surgery, the patient presented with warm, erythematous leg and pus discharge from the surgical site. Empirical antibiotic was started, and wound debridement was done. Intraoperatively, 50cc pus was evacuated, unhealthy muscle and tissue debrided. No loosening of the implant. Patient underwent multiple wound debridement. At 2 weeks post debridement wound healed well, but the proximal aspect was unable to close immediately. This left the proximal part of the implant to be exposed. Patient was then put on VAC dressing for 3 weeks until healthy granulation tissue closes the implant. Meanwhile, antibiotic was change according to culture and sensitivity. At 6 weeks post the first debridement, the wound was completely close, and patient was discharge home well. At 3 months post operatively, patient wound and fracture healed uneventfully and able to ambulate independently. Complex wounds are too serious to be dealt with. Team managing complex wound need continuous support through the provision of educational tools to support their professional development, engagement with local and international expert, as well as highquality products that increase efficiencies in servicesKeywords: VAC (Vacuum Assisted Closure), empirical- initial antibiotics, NPWT- negative pressure wound therapy, NF- necrotizing fasciitis, gangrene- blackish discoloration due to poor blood supply
Procedia PDF Downloads 1051486 Normalized Compression Distance Based Scene Alteration Analysis of a Video
Authors: Lakshay Kharbanda, Aabhas Chauhan
Abstract:
In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error
Procedia PDF Downloads 3401485 Factors Associated with Women’s Participation in Osteoporosis Health-Related Behaviors: An Analysis of Two Ethno-Cultural Groups
Authors: Offer E. Edelstein, Iris Vered, Orly Sarid
Abstract:
Background: Physical activity (PA) is considered as a major factor in bone density preservation and fracture prevention. Yet, gaps in understanding exist regarding how ethnocultural backgrounds might shape attitudes, intentions, and actual PA participation. Based on the theory of planned behavior (TPB) for predicting PA, the aims of the current study were: i) to compare attitudes, subjective norms, perceived control, intentions and knowledge, across two ethnocultural groups; ii) to evaluate the fit of the model across two ethnocultural groups of women: Israeli-born Jews and Ethiopian immigrants. Methods: Two hundred women (one hundred from each group), aged > 65, completed valid and reliable questionnaires assessing knowledge, TPB components, and actual PA. Results: The level of knowledge on osteoporosis was relatively low in both groups. Intention to participate in PA was the only variable that directly predicted actual PA. Intention to participate in PA served as a mediator among attitudes, subjective norms, perceived control, and actual PA. The TPB components mediated the link between knowledge and intention to participate in PA. Conclusion: It is important to understand and augment interventions that enhance PA, in the community, and with sensitivity concerning each ethnocultural group.Keywords: attitudes, ethnocultural groups, knowledge, physical activity
Procedia PDF Downloads 1361484 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3351483 Classification of Sturm-Liouville Problems at Infinity
Authors: Kishor J. shinde
Abstract:
We determine the values of k and p such that the Sturm-Liouville differential operator τu=-(d^2 u)/(dx^2) + kx^p u is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) for p=2 and ∀k, (ii) for ∀p and k=0, (iii) for all p and k>0, (iv) for 0≤p≤2 and k<0, (v) for p<0 and k<0. τ is in the limit circle case when (i) for p>2 and k<0.Keywords: limit point case, limit circle case, Sturm-Liouville, infinity
Procedia PDF Downloads 3671482 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values
Authors: Burçin Saltık, Levent Genç
Abstract:
In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice
Procedia PDF Downloads 2281481 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 951480 Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin
Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg
Abstract:
In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis
Procedia PDF Downloads 3611479 Mineralisation and Fluid Inclusions Studies of the Fluorite Deposit at Jebel Mecella, North Eastern Tunisia
Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi, David Banks
Abstract:
The Jebel Mecella F (Ba-Pb-Zn) ore deposits of the Zaghouan district are located in northeastern Tunisia, 60 km south of Tunis. The host rocks belong to the Ressas Formation of Kimmeridgian-Tithonian age and lower Cretaceous layers. Mineralisations occur as stratiform lenses and fracture fillings. The ore mineral assemblage is composed of fluorite, barite, sphalerite galena, and quartz. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 129 to 145°C final melting temperature range from -14.9 to -10.0, corresponding to salinities of 14.0 to 17.7 wt% NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 116 and 160°C. The final ice melting temperature ranges from -23 to -15 °C, corresponding to salinities between 17 and 24 wt% NaCl equivalent. The LAICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>K>Mg. Furthermore, the high K/Na values from fluid inclusions suggest the brine interacted with K-rich rocks in the basement or in siliciclastic sediments in the basins. The ore fluids in Jebel Mecella are highly saline and Na-K dominated with lower Mg concentrations, and come from the leaching of the dolomitic host rocks. These results are compatible with Mississippi-Valley-type mineralizing fluids.Keywords: Jebel Mecella, fluid inclusions, micro thermometry, LA-ICP-MS
Procedia PDF Downloads 1981478 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler
Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue
Procedia PDF Downloads 1181477 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study
Authors: Melissa Ramirez, Mohammad Awal
Abstract:
The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis
Procedia PDF Downloads 2841476 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles
Authors: Behrooz Movahedi
Abstract:
Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF
Procedia PDF Downloads 1351475 Failure Analysis of Laminated Veneer Bamboo Dowel Connections
Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer
Abstract:
Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo
Procedia PDF Downloads 2661474 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1501473 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara
Authors: Rafik Baouche, Rabah Chaouchi
Abstract:
This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.Keywords: stress, imagery, breakouts, sahara
Procedia PDF Downloads 761472 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3671471 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis
Authors: H. Jung, N. Kim, B. Kang, J. Choe
Abstract:
History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.Keywords: history matching, principal component analysis, reservoir modelling, support vector machine
Procedia PDF Downloads 1601470 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment
Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul
Abstract:
The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties
Procedia PDF Downloads 3191469 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 3121468 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 771467 Use of Fractal Geometry in Machine Learning
Authors: Fuad M. Alkoot
Abstract:
The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.Keywords: fractal geometry, machine learning, classifier, fractal dimension
Procedia PDF Downloads 2191466 Modeling Anisotropic Damage Algorithms of Metallic Structures
Authors: Bahar Ayhan
Abstract:
The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.Keywords: anisotropic damage, finite element method, plasticity, coupling
Procedia PDF Downloads 2071465 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 741464 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses
Authors: Erin Lynne Plettenberg, Jeremy Vickery
Abstract:
In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining
Procedia PDF Downloads 1741463 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 611462 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield
Authors: Wen Ma, Yong Peng, Zhixiang Li
Abstract:
Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass
Procedia PDF Downloads 1471461 Software Architectural Design Ontology
Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah
Abstract:
Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information.Keywords: semantic-based software architecture, software architecture, ontology, software engineering
Procedia PDF Downloads 5501460 A Study of Ocular Morbidity in Road Traffic Accidents
Authors: Nikhat Iqbal Tamboli
Abstract:
INTRODUCTION: road traffic accidents (RTAs) are one of the leading and common causes of ocular injuries especially in developing countries like India which are preventable with certain measures and so it is of public health importance. AIM: To study incidence and clinical presentation of ocular morbidity in road traffic accidents. METHOD: Prospective cross-sectional study was conducted on 360 patients reported in department of ophthalmology. Detailed ocular examination and relevant investigations done. RESULTS: Incidence of ocular injuries is 23%. male:female ratio is 4.5:1.Cases having Sub conjunctival haemorrhage [74].eccymosis[217]. lid lcerations [164]orbital fracture[12] corneal tear [7]corneal abrasion[2] sclera tear[6] hyphaema[4] traumatic mydriasis [7]traumatic cataract [2]vitreous haemorrhage [1]traumatic optic neuropathy[1].Maximum cases in age group 20-40 years, with two wheeler vehicles 94.7% .Under influence of alcohol 13.3%. CONCLUSION: Younger age group with male preponderance is involved in ocular trauma due to road traffic accidents .maximum cases reported are with anterior segment injuries. Alcohol and two wheeler vehicles are common risk factors. Injuries involving cornea had bad prognosis and involving retina had worst prognosis.Keywords: ocular morbidity, eye trauma, RTA, eye injury
Procedia PDF Downloads 671459 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 270