Search results for: academic speed and accuracy
7626 Current Starved Ring Oscillator Image Sensor
Authors: Devin Atkin, Orly Yadid-Pecht
Abstract:
The continual demands for increasing resolution and dynamic range in CMOS image sensors have resulted in exponential increases in the amount of data that needs to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various new readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a new light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator
Procedia PDF Downloads 927625 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: computer vision, pose estimation, pose tracking, Siamese network
Procedia PDF Downloads 1587624 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback
Authors: P. Nafisi Poor, P. Javid
Abstract:
Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability
Procedia PDF Downloads 1377623 The Impact of a Staff Well-Being Service for a Multi-Site Research Study
Authors: Ruth Elvish, Alex Turner, Jen Wells
Abstract:
Over recent years there has been an increasing interest in the topic of well-being at work, and staff support is an area of continued growth. The present qualitative study explored the impact of a staff well-being service that was specifically attached to a five-year multi-site research programme (the Neighbourhoods and Dementia Study, funded by the ESRC/NIHR). The well-being service was led by a clinical psychologist, who offered 1:1 sessions for staff and co-researchers with dementia. To our knowledge, this service was the first of its kind. Methodology: Interviews were undertaken with staff who had used the service and who opted to take part in the study (n=7). Thematic analysis was used as the method of analysis. Findings: Themes included: triggers, mechanisms of change, impact/outcomes, and unique aspects of a dedicated staff well-being service. Conclusions: The study highlights stressors that are pertinent amongst staff within academic settings, and shows the ways in which a dedicated staff well-being service can impact on both professional and personal lives. Positive change was seen in work performance, self-esteem, relationships, and coping. This exploratory study suggests that this well-being service model should be further trialled and evaluated.Keywords: academic, service, staff, support, well-being
Procedia PDF Downloads 2047622 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper
Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon
Abstract:
This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.Keywords: short-term load forecasting, power demand, neural networks, load forecasting
Procedia PDF Downloads 1947621 Effects of Classroom-Based Intervention on Academic Performance of Pupils with Attention Deficit Hyperactivity Disorder in Inclusive Classrooms in Buea
Authors: John Njikem
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly diagnosed behavioral disorders in children, associated with this disorder are core symptoms of inattention, hyperactivity and impulsivity. This study was purposely to enlighten and inform teachers, policy makers and other professionals concern in the education of this group of learners in inclusive schools in Buea, Cameroon. The major purpose of this study was to identify children with ADHD in elementary schools practicing inclusive education and to investigate the effect of classroom based intervention on their academic performance. The research problem stems from the fact that majority of children with ADHD in our school mostly have problems with classroom tasks like paying attention, easily distracted, and difficulties in organization and very little has been done to manage this numerous conditions, therefore it was necessary for the researcher to identify them and implement some inclusive strategies that teachers can better use in managing the behavior of this group of learners. There were four research questions and the study; the sample population used for the study was 27 pupils (3-7years old) formally identified with key symptoms of ADHD from primary 3-6 from four primary inclusive schools in Buea. Two sub-types of ADHD children were identified by using the recent DSM-IV behavioral checklist in recording their behavior after teacher and peer nomination they were later subjected to three groups for classroom intervention. Data collection was done by using interviews and other supportive methods such as document consultation, field notes and informal talks as additional sources was also used to gather information. Classroom Intervention techniques were carried out by the teachers themselves for 8 weeks under the supervision of the researcher, results were recorded for the 27 children's academic performance in the areas of math’s, writing and reading. Descriptive Statistics was applied in analyzing the data in percentages while tables and diagrams were used to represent the results. Findings obtained indicated that there was significant increase in the level of attention and organization on classroom tasks in the areas of reading, writing and mathematics. Finding also show that there was a more significant improvement made on their academic performance using the combined intervention approach which was proven to be the most effective intervention technique for pupils with ADHD in the study. Therefore it is necessary that teachers in inclusive primary schools in Buea understand the needs of these children and learn how to identify them and also use this intervention approaches to accommodate them in classroom task in order to encourage inclusive educational classroom practices in the country. Recommendations were based on each research objective and suggestions for further studies centered on other methods of classroom intervention for ADHD children in inclusive settings.Keywords: attention deficit hyperactivity disorder, inclusive classrooms, academic performance, impulsivity
Procedia PDF Downloads 2557620 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 1277619 Comparison between High Resolution Ultrasonography and Magnetic Resonance Imaging in Assessment of Musculoskeletal Disorders Causing Ankle Pain
Authors: Engy S. El-Kayal, Mohamed M. S. Arafa
Abstract:
There are various causes of ankle pain including traumatic and non-traumatic causes. Various imaging techniques are available for assessment of AP. MRI is considered to be the imaging modality of choice for ankle joint evaluation with an advantage of its high spatial resolution, multiplanar capability, hence its ability to visualize small complex anatomical structures around the ankle. However, the high costs and the relatively limited availability of MRI systems, as well as the relatively long duration of the examination all are considered disadvantages of MRI examination. Therefore there is a need for a more rapid and less expensive examination modality with good diagnostic accuracy to fulfill this gap. HRU has become increasingly important in the assessment of ankle disorders, with advantages of being fast, reliable, of low cost and readily available. US can visualize detailed anatomical structures and assess tendinous and ligamentous integrity. The aim of this study was to compare the diagnostic accuracy of HRU with MRI in the assessment of patients with AP. We included forty patients complaining of AP. All patients were subjected to real-time HRU and MRI of the affected ankle. Results of both techniques were compared to surgical and arthroscopic findings. All patients were examined according to a defined protocol that includes imaging the tendon tears or tendinitis, muscle tears, masses, or fluid collection, ligament sprain or tears, inflammation or fluid effusion within the joint or bursa, bone and cartilage lesions, erosions and osteophytes. Analysis of the results showed that the mean age of patients was 38 years. The study comprised of 24 women (60%) and 16 men (40%). The accuracy of HRU in detecting causes of AP was 85%, while the accuracy of MRI in the detection of causes of AP was 87.5%. In conclusions: HRU and MRI are two complementary tools of investigation with the former will be used as a primary tool of investigation and the latter will be used to confirm the diagnosis and the extent of the lesion especially when surgical interference is planned.Keywords: ankle pain (AP), high-resolution ultrasound (HRU), magnetic resonance imaging (MRI) ultrasonography (US)
Procedia PDF Downloads 1947618 Alternating Current Photovoltaic Module Model
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink
Procedia PDF Downloads 5777617 Quick Covering Machine for Grain Drying Pavement
Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug
Abstract:
In sundrying, the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack, conducting partial budget, and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0 .53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.Keywords: quick, covering machine, grain, drying pavement
Procedia PDF Downloads 3797616 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4577615 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System
Authors: Ying-Pin Chang
Abstract:
This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers
Procedia PDF Downloads 3967614 Measuring the Quality of Business Education: Employment Readiness Assessment
Authors: Gulbakhyt Sultanova
Abstract:
Business education institutions assess the progress of their students by giving them grades for courses completed and calculating a Grade Point Average (GPA). Whether the participation in these courses has led to the development of competences enabling graduates to successfully compete in the labor market should be measured using a new index: Employment Readiness Assessment (ERA). The higher the ERA, the higher the quality of education at a business school. This is applied, empirical research conducted by using a method of linear optimization. The aim of research is to identify factors which lead to the minimization of the deviation of GPA from ERA as well as to the maximization of ERA. ERA is composed of three components resulting from testing proficiency in Business English, testing work and personal skills, and job interview simulation. The quality of education is improving if GPA approximates ERA and ERA increases. Factors which have had a positive effect on quality enhancement are academic mobility of students and staff, practical-oriented courses taught by staff with work experience, and research-based courses taught by staff with research experience. ERA is a better index to measure the quality of business education than traditional indexes such as GPA due to its greater accuracy in assessing the level of graduates’ competences demanded in the labor market. Optimizing the educational process in pursuit of quality enhancement, ERA has to be used in parallel with GPA to find out which changes worked and resulted in improvement.Keywords: assessment and evaluation, competence evaluation, education quality, employment readiness
Procedia PDF Downloads 4497613 Middle School as a Developmental Context for Emergent Citizenship
Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake
Abstract:
Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche
Procedia PDF Downloads 3747612 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence
Procedia PDF Downloads 4027611 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1767610 The Relation between Cognitive Fluency and Utterance Fluency in Second Language Spoken Fluency: Studying Fluency through a Psycholinguistic Lens
Authors: Tannistha Dasgupta
Abstract:
This study explores the aspects of second language (L2) spoken fluency that are related to L2 linguistic knowledge and processing skill. It draws on Levelt’s ‘blueprint’ of the L2 speaker which discusses the cognitive issues underlying the act of speaking. However, L2 speaking assessments have largely neglected the underlying mechanism involved in language production; emphasis is given on the relationship between subjective ratings of L2 speech sample and objectively measured aspects of fluency. Hence, in this study, the relation between L2 linguistic knowledge and processing skill i.e. Cognitive Fluency (CF), and objectively measurable aspects of L2 spoken fluency i.e. Utterance Fluency (UF) is examined. The participants of the study are L2 learners of English, studying at high school level in Hyderabad, India. 50 participants with intermediate level of proficiency in English performed several lexical retrieval tasks and attention-shifting tasks to measure CF, and 8 oral tasks to measure UF. Each aspect of UF (speed, pause, and repair) were measured against the scores of CF to find out those aspects of UF which are reliable indicators of CF. Quantitative analysis of the data shows that among the three aspects of UF; speed is the best predictor of CF, and pause is weakly related to CF. The study suggests that including the speed aspect of UF could make L2 fluency assessment more reliable, valid, and objective. Thus, incorporating the assessment of psycholinguistic mechanisms into L2 spoken fluency testing, could result in fairer evaluation.Keywords: attention-shifting, cognitive fluency, lexical retrieval, utterance fluency
Procedia PDF Downloads 7137609 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking
Procedia PDF Downloads 947608 Production and Characterization of Sol-Enhanced Zn-Ni-Al2O3 Nano Composite Coating
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Sol-enhanced Zn-Ni-Al2O3 nano-composite coatings were electroplated on mild steel by our newly developed sol-enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The chemical composition, microstructure and mechanical properties of the composite and alloy coatings deposited at two different agitation speed were investigated. The structure of all coatings was single γ-Ni5Zn21 phase. The composite coatings possess refined crystals with higher microhardness compared to Zn-Ni alloy coatings. The wear resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. Higher agitation speed provided more uniform coatings with smaller grain sized and slightly higher microhardness. Considering composite coatings, high agitation speeds may facilitate co-deposition of alumina in the coatings.Keywords: microhardness, sol-enhanced electroplating, wear resistance, Zn-Ni-Al2O3 composite coatings
Procedia PDF Downloads 5067607 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1427606 The Academic Experience of Vocational Training Teachers
Authors: Andréanne Gagné, Jo Anni Joncas, Éric Tendon
Abstract:
Teaching in vocational training requires an excellent mastery of the trade being taught, but also solid professional skills in pedagogy. Teachers are typically recruited on the basis of their trade expertise, and they do not necessarily have training or experience in pedagogy. In order to counter this lack, the Ministry of Education (Québec, Canada) requires them to complete a 120-credit university program to obtain their teaching certificate. They must complete this training in addition to their teaching duties. This training was rarely planned in the teacher’s life course, and each teacher approaches it differently: some are enthusiastic, but many feel reluctant discouragement and even frustration at the idea of committing to a training program lasting an average of 10 years to completion. However, Quebec is experiencing an unprecedented shortage of teachers, and the perseverance of vocational teachers in their careers requires special attention because of the conditions of their specific integration conditions. Our research examines the perceptions that vocational teachers in training have of their academic experience in pre-service teaching. It differs from previous research in that it focuses on the influence of the academic experience on the teaching employment experience. The goal is that by better understanding the university experience of teachers in vocational education, we can identify support strategies to support their school experience and their teaching. To do this, the research is based on the theoretical framework of the sociology of experience, which allows us to study the way in which these “teachers-students” give meaning to their university program in articulation with their jobs according to three logics of action. The logic of integration is based on the process of socialization, where the action is preceded by the internalization of values, norms, and cultural models associated with the training context. The logic of strategy refers to the usefulness of this experience where the individual constructs a form of rationality according to his objectives, resources, social position, and situational constraints. The logic of subjectivation refers to reflexivity activities aimed at solving problems and making choices. These logics served as a framework for the development of an online questionnaire. Three hundred respondents, newly enrolled in an undergraduate teaching program (bachelor's degree in vocational education), expressed themselves about their academic experience. This paper relates qualitative data (open-ended questions) subjected to an interpretive repertory analysis approach to descriptive data (closed-ended questions) that emerged. The results shed light on how the respondents perceive themselves as teachers and students, their perceptions of university training and the support offered, and the place that training occupies in their professional path. Indeed, their professional and academic paths are inextricably linked, and it seems essential to take them into account simultaneously to better meet their needs and foster the development of their expertise in pedagogy. The discussion focuses on the strengths and limitations of university training from the perspective of the logic of action. The results also suggest support strategies that can be implemented to better support the integration and retention of student teachers in professional education.Keywords: teacher, vocational training, pre-service training, academic experience
Procedia PDF Downloads 1187605 Critical Reading Achievement of Rural Migrant Children in China: The Roles of Educational Expectation
Authors: Liman Zhao, Jianlong Zhang, Mingman Ren, Chuang Wang, Jian Liu
Abstract:
Rural migrant children have become a fast-growing population in China as a consequence of the large-scale population flow from rural to urban areas in the context of urbanization. In China, the socioeconomic status of migrant children is relatively low in comparison to non-migrant children. Parents of migrant children often work in occupations with long working hours, high labor intensity, and low pay due to their poor academic qualifications. Most migrant children's parents have not received higher education and have no time to read with their children. The family of migrant children usually does not have a good collection of books either, which leads to these children’s insufficient reading and low reading levels. Moreover, migrant children frequently relocate with their parents, and their needs for knowledge and reading are often neglected by schools, which puts migrant children at risk of academic failure in China. Therefore, the academic achievement of rural migrant children has become a focus of education in China. This study explores the relationship between the educational expectation of rural migrant children and their critical reading competence in general and the moderating effect of the difference between parental educational expectation to their children and the children’s own educational expectation. The responses to a survey from 5113 seventh-grade children in a district of the capital city in China revealed that children who moved to cities in grades 4-6 of primary school performed the best in critical reading, and children who moved to cities after middle school showed the worst performance in critical reading. In addition, parents’ educational expectations of their children and their own educational expectations were both significant predictors of rural migrant children’s reading competence. The higher a child's expectations of a degree and the smaller the gap between parents' expectations of a child's education and the child's own education expectations, the better the child's performance in critical reading.Keywords: educational expectation, critical reading competence, rural migrant children, moderating effect
Procedia PDF Downloads 2057604 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding
Authors: Khalil Aghapouramin
Abstract:
The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfacesKeywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior
Procedia PDF Downloads 3467603 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 607602 Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash
Authors: Olushola Ayanda, Simphiwe Nelana, Eliazer Naidoo
Abstract:
In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm.Keywords: arsenic, fly ash, kinetics, isotherm, thermodynamics
Procedia PDF Downloads 2457601 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 647600 Bridging the Gap Between Student Needs and Labor Market Requirements in the Translation Industry in Saudi Arabia
Authors: Sultan Samah A Almjlad
Abstract:
The translation industry in Saudi Arabia is experiencing significant shifts driven by Vision 2030, which aims to diversify the economy and enhance international engagement. This change highlights the need for translators who are skilled in various languages and cultures, playing a crucial role in the nation's global integration efforts. However, there's a notable gap between the skills taught in academic institutions and what the job market demands. Many translation programs in Saudi universities don't align well with industry needs, resulting in graduates who may not meet employer expectations. To tackle this challenge, it's essential to thoroughly analyze the market to identify the key skills required, especially in sectors like legal, medical, technical, and audiovisual translation. At the same time, existing translation programs need to be evaluated to see if they cover necessary topics and provide practical training. Involving stakeholders such as translation agencies, professionals, and students is crucial to gather diverse perspectives. Identifying discrepancies between academic offerings and market demands will guide the development of targeted strategies. These strategies may include enriching curricula with industry-specific content, integrating emerging technologies like machine translation and CAT tools, and establishing partnerships with industry players to offer practical training opportunities and internships. Industry-led workshops and seminars can provide students with valuable insights, and certification programs can validate their skills. By aligning academic programs with industry needs, Saudi Arabia can build a skilled workforce of translators, supporting its economic diversification goals under Vision 2030. This alignment benefits both students and the industry, contributing to the growth of the translation sector and the overall development of the country.Keywords: translation industry, briging gap, labor market, requirements
Procedia PDF Downloads 467599 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis
Procedia PDF Downloads 3897598 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 1127597 The Ideal Memory Substitute for Computer Memory Hierarchy
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.Keywords: cache, memory-hierarchy, memory, registers, storage
Procedia PDF Downloads 169