Search results for: algorithm development
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19366

Search results for: algorithm development

18106 The Global Economic System and the Third World Development

Authors: Monday Dickson

Abstract:

Shortly before the end of the second world war, allied leaders and other western powers designed an economic regime that would foster, among other things, global economic reconstruction, prosperity and overall development of countries of the world. They founded both the World Bank and the International Monetary Fund (IMF), with a general consensus that while the latter should specialize in monitoring global and national economies and acting as a lender of last resort, the former should focus on fighting poverty and promoting development. In setting the rules for world trade, the General Agreement on Trade and Tariffs (GATT) evolved into the World Trade Organisation (WTO). This paper, therefore, examines the impact of the activities of these institutions on the transformation and development aspirations of countries of the Third World. The study adopts the descriptive and analytical methods of investigation and derived relevant secondary data from books, journal articles, encyclopedia as well as reports from countries of the Third World. Findings show that rather than fostering poverty reduction and overall development as envisaged, the activities of global economy system leads to the “development of underdevelopment” of the Third World Countries. The strategic options that are available to countries of the Third World derived from the ability of the national governments to develop programmes of systematic exploration and exploitation of vital indices of relations with strategic countries to advance their development agenda.

Keywords: development, global economic system, prosperity, third world

Procedia PDF Downloads 442
18105 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex three-dimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: obstacle avoidance, particle swarm optimization, three-dimensional path planning unmanned aerial vehicles

Procedia PDF Downloads 408
18104 The Impact of Human Rights Violation in Modern Society

Authors: Hanania Nasan Shokry Abdelmasih

Abstract:

The interface between improvement and human rights has long been the subject of scholarly debate. As an end result, a hard and fast of principles, starting from the proper improvement to a human rights-based totally technique to development, have been adopted to understand the dynamics among the two concepts. In spite of those attempts, the precise link between development and human rights is not yet fully understood. However, the inevitable interdependence between the two standards and the idea that development efforts must be made while respecting human rights have received prominence in recent years. Then again, the emergence of sustainable development as a widely spread method in development dreams and rules similarly complicates this unresolved convergence. The place of sustainable improvement inside the human rights discourse and its role in ensuring the sustainability of improvement programs require systematic research. The purpose of this newsletter is, therefore, to take a look at the relationship between development and human rights, with particular attention to the area of the standards of sustainable improvement in international human rights regulation. It's going to examine whether it recognizes the proper to achieve sustainable improvement. Hence, the Article states that the principles of sustainable improvement are diagnosed immediately or implicitly in numerous human rights devices, which is an affirmative solution to the question posed above. Therefore, this report scrutinizes worldwide and local human rights gadgets, as well as the case regulation and interpretations of human rights in our bodies, to support this speculation.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 26
18103 A Second Order Genetic Algorithm for Traveling Salesman Problem

Authors: T. Toathom, M. Munlin, P. Sugunnasil

Abstract:

The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB.

Keywords: genetic algorithm, traveling salesman problem, initial population, chromosomes encoding

Procedia PDF Downloads 269
18102 The Influence of Architectural-Planning Structure of Cities on Their Sustainable Development

Authors: M. Kashiripoor

Abstract:

Existing indicators for sustainable urban development do not identify the features of cities’ planning structures and their architecture. Iranian city has special relevance problem of assessing the conformity of their planning and development of the concept of sustainable development. Based on theoretical sources, the author concludes that, despite the existence of common indicators for sustainable development of settlements, specialized evaluation criteria city structure planning has not been developed. He is trying to fill this gap and put forward a system of indicators characterizing the level of development of the architectural-planning structure of the city. The proposed system of indicators is designed based on technical and economic urban standard indicators from different countries. Alternative designing systems and requirements of modern rating systems like LEED-ND comprise a criterion for evaluation of urban structures in accordance with principles of "Green" building and New Urbanism. Urban development trends are close in spirit of sustainable development and developed under its influence. The study allowed concluding that a system of indicators to identify the relevant architectural-planning structure of the city, requirements of sustainable development, should be adapted to the conditions of each country, particularly in Iran. The article attempts typology proposed indicators, which are presented in tabular form and are divided into two types: planning and spatial. This article discusses the known indicators of sustainable development and proposed specific system of indicators characterizing the level of development of architectural-planning structure of the city. This article examines indicators for evaluating level of city' planning structure development. The proposed system of indicators is derived from the urban planning standards and rating systems such as LEED-ND, BREEAM Community and CASBEE-UD.

Keywords: architectural-planning structure of cities, urban planning indicators, urban space indicators, urban development

Procedia PDF Downloads 633
18101 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network

Authors: Navdeep Singh Randhawa, Shally Sharma

Abstract:

Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.

Keywords: wireless sensor network, routing, swarm intelligence, MPRSO

Procedia PDF Downloads 352
18100 Development Trends of the Manufacturing Industry in Georgia

Authors: Nino Grigolaia

Abstract:

Introduction. The paper discusses the role of the manufacturing industry in the Georgian economy, analyzes the current trends in the development of the manufacturing industry, reveals its impact on the Georgian economy, and justifies the essential importance of industrial transformation for the future development of the Georgian economy. Objectives. The main objective of research is to study development trends of the manufacturing industry of Georgia and estimate the industrial policy in Georgia. Methodology. The paper uses methods of induction, deduction, analysis, synthesis, analogy, correlation, and statistical observation. A qualitative study was conducted based on a survey of industry experts and entrepreneurs in order to identify the factors hindering and contributing to the manufacturing industry. Conclusions. The research reveals that the development of the manufacturing industry and the formation of industrial policy are of special importance for the further growth and development of the Georgian economy. Based on the research, the factors promoting and hindering the development of the manufacturing industry are identified. The need to increase foreign direct investment in the industrial sector are highlighted. Recommendations for the development of the country's manufacturing industry are developed, taking into account the competitive advantages and international experience of Georgia.

Keywords: manufacturing, industrial policy, contributing factor, hindering factor

Procedia PDF Downloads 141
18099 Entrepreneurship Education as a 21st Century Strategy for Economic Growth and Sustainable Development

Authors: M. Fems Kurotimi, Agada Franklin, Godsave Aladei, Opigo Helen

Abstract:

Within the last 30 years, entrepreneurship education (EE) has continued to gain massive interest both in the field of research and among policy makers. This surge in interest can be attributed to the perceived importance EE plays in the equipping of potential entrepreneurs and as a 21st century strategy to foster economic growth and development. This paper sets out to ascertain the correlation between EE and economic growth and development. A desk research approach was adopted where a multiplicity of literatures in the field were studied intensely. The findings reveal that indeed EE has a positive effect on entrepreneurship engagement thereby fostering economic growth and development. However, some research studies reported the contrary. That although EE may be able to equip potential entrepreneurs with requisite entrepreneurial skills and competencies, it will only be successful in producing entrepreneurs if they are internally driven to become entrepreneurs, because we cannot make people what they are not. The findings also reveal that countries that adopted EE early have more innovations inspired by entrepreneurs and are more developed than those that only recently adopted EE as a viable tool for entrepreneurship and economic development.

Keywords: entrepreneurship, entrepreneurship education, economic development, economic growth, sustainable development

Procedia PDF Downloads 335
18098 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 138
18097 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 331
18096 The Application of Modern Technologies in Urban Development

Authors: Solotan A. Tolulope

Abstract:

Due to the lack of application of laws, implementers' acquaintance with the principles of urban planning, or the absence of laws and the governmental role, cities and their urban growth developed more than the fundamental designs and plans. This has led to a lack of foundations and criteria for achieving a life that provides the needs of sufficient housing in urban planning. In this study, we attempted to use cutting-edge innovations and technology to manage and resolve issues while collaborating with planning cadres that have the potential to significantly and favorably impact urban development. This helps to enhance management's function and the effectiveness of urban planning and management. To fulfill the needs of the community and the neighborhoods of these cities, modern approaches and technologies are used, addressing the criteria of sustainability and development. To put the notion of urban sustainability and development into action, this has been researched using global experiences.

Keywords: application, modern, technologies, urban, development

Procedia PDF Downloads 108
18095 Human Performance Technology (HPT) as an Entry Point to Achieve Organizational Development in Educational Institutions of the Ministry of Education

Authors: Alkhathlan Mansour

Abstract:

Current research aims at achieving the organizational development in the educational institutions in the governorate of Al-Kharj through the human performance technology (HPT) model that is named; “The Intellectual Model to improve human performance”. To achieve the goal of this research, it tools -that it is consisting of targeted questionnaires to research sample numbered (120)- have been set up. This sample is represented in; department managers in Prince Sattam Bin Abdulaziz University (50), educational supervisors in the Department of Education (40), school administrators in the governorate (30), and the views of education experts through personal interviews in the proposal to achieve organizational development through the intellectual model to improve human performance. Among the most important research results is that there are many obstacles prevent the organizational development in the educational institutions, so the research suggested a model to achieve organizational development through human performance technologies, as well as the researcher recommended through the results of his research that the administrators have to take into account the justice in the distribution of incentives to employees of educational institutions and training leaders in educational institutions on organizational development strategies and working on the preparation of experts of organizational development in the educational institutions to develop the necessary policies and procedures of each institution.

Keywords: human performance, development, education, organizational

Procedia PDF Downloads 288
18094 Environmental Education and Climate Change Resilience Development in Schools of Pakistan

Authors: Mehak Masood

Abstract:

Education is critical for promoting sustainable development and improving the capacity of people to address environment and development issues. It is also critical for achieving environmental and ethical awareness, values and attitudes, skills and behaviour consistent with sustainable development and for effective public participation in decision-making. In this regard, The British Council Pakistan have conducted a need assessment study conducted during the training sessions with three different groups of educationists belonging to both government and public sectors on the topic of Climate Change and Environmental Education (CCEE). This study aims to review perceptions about climate change and environmental education and analyze its need and importance according to educationists of Pakistan.

Keywords: environmental education, climate change, resilience development, awareness

Procedia PDF Downloads 421
18093 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 95
18092 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 81
18091 Effect of Political and Social Context in Libya on Accounting Information System to Meet Development Needs

Authors: Bubaker F. Shareia, Almuetaz R. Boubakr

Abstract:

The aim of this paper is to show how Libya’s legal, economic, political, social, and cultural systems have shaped Libyan development. This will provide a background to develop an understanding of the current role of the accounting information system in Libya and the challenges facing the design of the aeronautical information system to meet the development needs of Libya. Our knowledge of the unified economic operating systems of the world paves the way for the economic development of every developing country. In order to achieve this understanding, every developing country should be provided with a high-efficiency communications system in order to be able to interact globally. From the point of view of the theory of globalization, Libya's understanding of its socio-economic and political systems is vital in order to be able to adopt and apply accounting techniques that will assist in the economic development of Libya.

Keywords: accounting, economic development, globalisation theory, information system

Procedia PDF Downloads 270
18090 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 427
18089 Hit-Or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing

Procedia PDF Downloads 330
18088 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing

Procedia PDF Downloads 113
18087 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 68
18086 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.

Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards

Procedia PDF Downloads 466
18085 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems

Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.

Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance

Procedia PDF Downloads 329
18084 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 137
18083 Parallel Evaluation of Sommerfeld Integrals for Multilayer Dyadic Green's Function

Authors: Duygu Kan, Mehmet Cayoren

Abstract:

Sommerfeld-integrals (SIs) are commonly encountered in electromagnetics problems involving analysis of antennas and scatterers embedded in planar multilayered media. Generally speaking, the analytical solution of SIs is unavailable, and it is well known that numerical evaluation of SIs is very time consuming and computationally expensive due to the highly oscillating and slowly decaying nature of the integrands. Therefore, fast computation of SIs has a paramount importance. In this paper, a parallel code has been developed to speed up the computation of SI in the framework of calculation of dyadic Green’s function in multilayered media. OpenMP shared memory approach is used to parallelize the SI algorithm and resulted in significant time savings. Moreover accelerating the computation of dyadic Green’s function is discussed based on the parallel SI algorithm developed.

Keywords: Sommerfeld-integrals, multilayer dyadic Green’s function, OpenMP, shared memory parallel programming

Procedia PDF Downloads 244
18082 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker

Authors: Aysan Esgandanian, Sabalan Daneshvar

Abstract:

The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.

Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller

Procedia PDF Downloads 460
18081 Entrepreneurship Success in Jordan

Authors: Atef Aladwan

Abstract:

This research will focus on stimulating greater freedom and facilitating small and medium-sized enterprises (SMEs) in Jordan to create jobs, as it is emerging as a key development issue. It will highlight the importance of integrating SMEs into development strategies. Jordan has potentially a large market for its products as a result of proximity to developed country markets, signing of various free trades agreements with European countries, cheap energy sources and vast sovereign funds willing to invest in the development of local enterprises. It is beginning to be accepted by governments that SMEs rather than government need to be the main player in domestic economic activity, especially as providers of employment opportunities, and hence generators of sources of income for many households. To foster SME development, it is generally recognised that reforms are needed in Jordan in order to bring about a more globally competitive and business-friendly environment.

Keywords: SMEs, competitiveness, entrepreneurship, jordan, development

Procedia PDF Downloads 419
18080 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration

Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong

Abstract:

This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.

Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation

Procedia PDF Downloads 186
18079 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering

Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott

Abstract:

Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.

Keywords: cancer research, graph theory, machine learning, single cell analysis

Procedia PDF Downloads 112
18078 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 481
18077 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 476