Search results for: agent-based modeling for evacuation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4051

Search results for: agent-based modeling for evacuation

2791 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 327
2790 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: hydrofining, kinetic, modeling, optimization

Procedia PDF Downloads 438
2789 Mathematical Modeling and Analysis of COVID-19 Pandemic

Authors: Thomas Wetere

Abstract:

Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.

Keywords: modeling, COVID-19, MCMC, stability

Procedia PDF Downloads 114
2788 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 181
2787 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
2786 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 341
2785 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 103
2784 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 87
2783 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 347
2782 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds

Authors: Carolina Payares-Asprino

Abstract:

Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.

Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding

Procedia PDF Downloads 167
2781 Modeling of Leaks Effects on Transient Dispersed Bubbly Flow

Authors: Mohand Kessal, Rachid Boucetta, Mourad Tikobaini, Mohammed Zamoum

Abstract:

Leakage problem of two-component fluids flow is modeled for a transient one-dimensional homogeneous bubbly flow and developed by taking into account the effect of a leak located at the middle point of the pipeline. The corresponding three conservation equations are numerically resolved by an improved characteristic method. The obtained results are explained and commented in terms of physical impact on the flow parameters.

Keywords: fluid transients, pipelines leaks, method of characteristics, leakage problem

Procedia PDF Downloads 479
2780 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
2779 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
2778 A Temporal QoS Ontology For ERTMS/ETCS

Authors: Marc Sango, Olimpia Hoinaru, Christophe Gransart, Laurence Duchien

Abstract:

Ontologies offer a means for representing and sharing information in many domains, particularly in complex domains. For example, it can be used for representing and sharing information of System Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS written in natural language. Since this system is a real-time and critical system, generic ontologies, such as OWL and generic ERTMS ontologies provide minimal support for modeling temporal information omnipresent in these SRS documents. To support the modeling of temporal information, one of the challenges is to enable representation of dynamic features evolving in time within a generic ontology with a minimal redesign of it. The separation of temporal information from other information can help to predict system runtime operation and to properly design and implement them. In addition, it is helpful to provide a reasoning and querying techniques to reason and query temporal information represented in the ontology in order to detect potential temporal inconsistencies. Indeed, a user operation, such as adding a new constraint on existing planning constraints can cause temporal inconsistencies, which can lead to system failures. To address this challenge, we propose a lightweight 3-layer temporal Quality of Service (QoS) ontology for representing, reasoning and querying over temporal and non-temporal information in a complex domain ontology. Representing QoS entities in separated layers can clarify the distinction between the non QoS entities and the QoS entities in an ontology. The upper generic layer of the proposed ontology provides an intuitive knowledge of domain components, specially ERTMS/ETCS components. The separation of the intermediate QoS layer from the lower QoS layer allows us to focus on specific QoS Characteristics, such as temporal or integrity characteristics. In this paper, we focus on temporal information that can be used to predict system runtime operation. To evaluate our approach, an example of the proposed domain ontology for handover operation, as well as a reasoning rule over temporal relations in this domain-specific ontology, are given.

Keywords: system requirement specification, ERTMS/ETCS, temporal ontologies, domain ontologies

Procedia PDF Downloads 422
2777 Free and Open Source Software for BIM Workflow of Steel Structure Design

Authors: Danilo Di Donato

Abstract:

The continuous new releases of free and open source software (FOSS) and the high costs of proprietary software -whose monopoly is characterized by closed codes and the low level of implementation and customization of software by end-users- impose a reflection on possible tools that can be chosen and adopted for the design and the representation of new steel constructions. The paper aims to show experimentation carried out to verify the actual potential and the effective applicability of FOSS supports to the BIM modeling of steel structures, particularly considering the goal of a possible workflow in order to achieve high level of development (LOD); allow effective interchange methods between different software. To this end, the examined software packages are those with open source or freeware licenses, in order to evaluate their use in architectural praxis. The test has primarily involved the experimentation of Freecad -the only Open Source software that allows a complete and integrated BIM workflow- and then the results have been compared with those of two proprietary software, Sketchup and TeklaBim Sight, which are released with a free version, but not usable for commercial purposes. The experiments carried out on Open Source, and freeware software was then compared with the outcomes that are obtained by two proprietary software, Sketchup Pro and Tekla Structure which has special modules particularly addressed to the design of steel structures. This evaluation has concerned different comparative criteria, that have been defined on the basis of categories related to the reliability, the efficiency, the potentiality, achievable LOD and user-friendliness of the analyzed software packages. In order to verify the actual outcomes of FOSS BIM for the steel structure projects, these results have been compared with a simulation related to a real case study and carried out with a proprietary software BIM modeling. Therefore, the same design theme, the project of a shelter of public space, has been developed using different software. Therefore the purpose of the contribution is to assess what are the developments and potentialities inherent in FOSS BIM, in order to estimate their effective applicability to professional practice, their limits and new fields of research they propose.

Keywords: BIM, steel buildings, FOSS, LOD

Procedia PDF Downloads 174
2776 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 506
2775 Integration of LCA and BIM for Sustainable Construction

Authors: Laura Álvarez Antón, Joaquín Díaz

Abstract:

The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.

Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability

Procedia PDF Downloads 451
2774 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 94
2773 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 158
2772 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education

Authors: Sandra Arango-Caro, Kristine Callis-Duehl

Abstract:

The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.

Keywords: assessment, augmented reality, education, plant science, virtual reality

Procedia PDF Downloads 172
2771 Modeling Salam Contract for Profit and Loss Sharing

Authors: Dchieche Amina, Aboulaich Rajae

Abstract:

Profit and loss sharing suggests an equitable sharing of risks and profits between the parts involved in a financial transaction. Salam is a contract in which advance payment is made for goods to be delivered at a future date. The purpose of this work is to price a new contract for profit and loss sharing based on Salam contract, using Khiyar Al Ghabn which is an agreement of choice in case of misrepresent facts.

Keywords: Islamic finance, shariah compliance, profi t and loss sharing, derivatives, risks, hedging, salam contract

Procedia PDF Downloads 332
2770 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 68
2769 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
2768 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
2767 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA

Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani

Abstract:

Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.

Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample

Procedia PDF Downloads 330
2766 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China

Authors: Yiyuan Tao

Abstract:

Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.

Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin

Procedia PDF Downloads 124
2765 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study

Authors: Zikun Li, Regine Talleyrand

Abstract:

Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.

Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling

Procedia PDF Downloads 69
2764 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 273
2763 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner

Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally

Abstract:

International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.

Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion

Procedia PDF Downloads 223
2762 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques

Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair

Abstract:

Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.

Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting

Procedia PDF Downloads 357