Search results for: optimum signal approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3872

Search results for: optimum signal approximation

2642 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.

Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene

Procedia PDF Downloads 270
2641 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.

Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment

Procedia PDF Downloads 466
2640 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 97
2639 Fungal Cellulase/Xylanase Complex and Their Industrial Applications

Authors: L. Kutateldze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, I. Khokhashvili, T. Sadunishvili

Abstract:

Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application.

Keywords: cellulase/xylanase, cellulose hydrolysis, microscopic fungi, thermophilic strain

Procedia PDF Downloads 285
2638 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 106
2637 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
2636 Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy

Authors: K. Subbaiah, C. V. Jeyakumar, S. R. Koteswara Rao

Abstract:

Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys.

Keywords: cast Al-Mg-Sc alloy, GTAW, microstructure, mechanical properties

Procedia PDF Downloads 412
2635 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 503
2634 Effects of Dispersion on Peristaltic Flow of a Micropolar Fluid Through a Porous Medium with Wall Effects in the Presence of Slip

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

This paper investigates the effects of slip boundary condition and wall properties on the dispersion of a solute matter in peristaltic flow of an incompressible micropolar fluid through a porous medium. Long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that peristalsis enhances dispersion. It also increases with micropolar parameter, cross viscosity coefficient, Darcy number, slip parameter and wall parameters. Further, dispersion decreases with homogenous chemical reaction rate and heterogeneous chemical reaction rate.

Keywords: chemical reaction, dispersion, peristalsis, slip condition, wall properties

Procedia PDF Downloads 466
2633 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 317
2632 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency

Authors: Rania Alshikhe, Vinita Jindal

Abstract:

Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.

Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE

Procedia PDF Downloads 157
2631 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System

Authors: Hassan Qandil

Abstract:

Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.

Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar

Procedia PDF Downloads 155
2630 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 99
2629 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 459
2628 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 188
2627 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology

Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea

Abstract:

The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.

Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties

Procedia PDF Downloads 167
2626 Bio-Remediation of Lead-Contaminated Water Using Adsorbent Derived from Papaya Peel

Authors: Sahar Abbaszadeh, Sharifah Rafidah Wan Alwi, Colin Webb, Nahid Ghasemi, Ida Idayu Muhamad

Abstract:

Toxic heavy metal discharges into environment due to rapid industrialization is a serious pollution problem that has drawn global attention towards their adverse impacts on both the structure of ecological systems as well as human health. Lead as toxic and bio-accumulating elements through the food chain, is regularly entering to water bodies from discharges of industries such as plating, mining activities, battery manufacture, paint manufacture, etc. The application of conventional methods to degrease and remove Pb(II) ion from wastewater is often restricted due to technical and economic constrains. Therefore, the use of various agro-wastes as low-cost bioadsorbent is found to be attractive since they are abundantly available and cheap. In this study, activated carbon of papaya peel (AC-PP) (as locally available agricultural waste) was employed to evaluate its Pb(II) uptake capacity from single-solute solutions in sets of batch mode experiments. To assess the surface characteristics of the adsorbents, the scanning electron microscope (SEM) coupled with energy disperse X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis were utilized. The removal amount of Pb(II) was determined by atomic adsorption spectrometry (AAS). The effects of pH, contact time, the initial concentration of Pb(II) and adsorbent dosage were investigated. The pH value = 5 was observed as optimum solution pH. The optimum initial concentration of Pb(II) in the solution for AC-PP was found to be 200 mg/l where the amount of Pb(II) removed was 36.42 mg/g. At the agitating time of 2 h, the adsorption processes using 100 mg dosage of AC-PP reached equilibrium. The experimental results exhibit high capability and metal affinity of modified papaya peel waste with removal efficiency of 93.22 %. The evaluation results show that the equilibrium adsorption of Pb(II) was best expressed by Freundlich isotherm model (R2 > 0.93). The experimental results confirmed that AC-PP potentially can be employed as an alternative adsorbent for Pb(II) uptake from industrial wastewater for the design of an environmentally friendly yet economical wastewater treatment process.

Keywords: activated carbon, bioadsorption, lead removal, papaya peel, wastewater treatment

Procedia PDF Downloads 285
2625 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 228
2624 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications

Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani

Abstract:

This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification

Procedia PDF Downloads 297
2623 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength

Procedia PDF Downloads 302
2622 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
2621 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD

Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.

Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio

Procedia PDF Downloads 371
2620 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 156
2619 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
2618 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders

Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid

Abstract:

Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.

Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste

Procedia PDF Downloads 128
2617 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 291
2616 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 433
2615 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 170
2614 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 72
2613 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105