Search results for: locations
106 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences and Resilience of Local Residents from a Posttraumatic Growth Perspective
Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang
Abstract:
The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well.As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth (PTG)
Procedia PDF Downloads 74105 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity
Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz
Abstract:
The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.Keywords: irrigation, matric potential, rice, water scarcity
Procedia PDF Downloads 198104 A Geoprocessing Tool for Early Civil Work Notification to Optimize Fiber Optic Cable Installation Cost
Authors: Hussain Adnan Alsalman, Khalid Alhajri, Humoud Alrashidi, Abdulkareem Almakrami, Badie Alguwaisem, Said Alshahrani, Abdullah Alrowaished
Abstract:
Most of the cost of installing a new fiber optic cable is attributed to civil work-trenching-cost. In many cases, information technology departments receive project proposals in their eReview system, but not all projects are visible to everyone. Additionally, if there was no IT scope in the proposed project, it is not likely to be visible to IT. Sometimes it is too late to add IT scope after project budgets have been finalized. Finally, the eReview system is a repository of PDF files for each project, which commits the reviewer to manual work and limits automation potential. This paper details a solution to address the late notification of the eReview system by integrating IT Sites GIS data-sites locations-with land use permit (LUP) data-civil work activity, which is the first step before securing the required land usage authorizations and means no detailed designs for any relevant project before an approved LUP request. To address the manual nature of eReview system, both the LUP System and IT data are using ArcGIS Desktop, which enables the creation of a geoprocessing tool with either Python or Model Builder to automate finding and evaluating potentially usable LUP requests to reduce trenching between two sites in need of a new FOC. To achieve this, a weekly dump was taken from LUP system production data and loaded manually onto ArcMap Desktop. Then a custom tool was developed in model builder, which consisted of a table of two columns containing all the pairs of sites in need of new fiber connectivity. The tool then iterates all rows of this table, taking the sites’ pair one at a time and finding potential LUPs between them, which satisfies the provided search radius. If a group of LUPs was found, an iterator would go through each LUP to find the required civil work between the two sites and the LUP Polyline feature and the distance through the line, which would be counted as cost avoidance if an IT scope had been added. Finally, the tool will export an Excel file named with sites pair, and it will contain as many rows as the number of LUPs, which met the search radius containing trenching and pulling information and cost. As a result, multiple projects have been identified – historical, missed opportunity, and proposed projects. For the proposed project, the savings were about 75% ($750,000) to install a new fiber with the Euclidean distance between Abqaiq GOSP2 and GOSP3 DCOs. In conclusion, the current tool setup identifies opportunities to bundle civil work on single projects at a time and between two sites. More work is needed to allow the bundling of multiple projects between two sites to achieve even more cost avoidance in both capital cost and carbon footprint.Keywords: GIS, fiber optic cable installation optimization, eliminate redundant civil work, reduce carbon footprint for fiber optic cable installation
Procedia PDF Downloads 219103 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece
Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis
Abstract:
Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).Keywords: dairy cows, seropositivity, spatial analysis, temperature factors
Procedia PDF Downloads 198102 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 142101 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 387100 Social Implementation of Information Sharing Road Safety Measure in South-East Asia
Authors: Hiroki Kikuchi, Atsushi Fukuda, Hirokazu Akahane, Satoru Kobayakawa, Tuenjai Fukuda, Takeru Miyokawa
Abstract:
According to WHO reports, fatalities by road traffic accidents in many countries of South-East Asia region especially Thailand and Malaysia are increasing year by year. In order to overcome these serious problems, both governments are focusing on road safety measures. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan and Japan International Cooperation Agency (JICA) have begun active support based on the experiences to reduce the number of fatalities in road accidents in Japan in the past. However, even if the successful road safety measures in Japan is adopted in South-East Asian countries, it is not sure whether it will work well or not. So, it is necessary to clarify the issues and systematize the process for the implementation of road safety measures in South-East Asia. On the basis of the above, this study examined the applicability of "information sharing traffic safety measure" which is one of the successful road safety measures in Japan to the social implementation of road safety measures in South-East Asian countries. The "Information sharing traffic safety measure" is carried out traffic safety measures by stakeholders such as residents, administration, and experts jointly. In this study, we extracted the issues of implementation of road safety measures under local context firstly. This is clarifying the particular issues with its implementation in South-East Asian cities. Secondly, we considered how to implement road safety measures for solving particular issues based on the method of "information sharing traffic safety measure". In the implementation method, the location of the occurrence of a dangerous event was extracted based on the “HIYARI-HATTO” data which were obtained from the residents. This is because it is considered that the implementation of the information sharing traffic safety measure focusing on the location where the dangerous event occurs leads to the reduction of traffic accidents. Also, the target locations for the implementation of measures differ for each city. In Penang, we targeted the intersections in the downtown, while in Suphan Buri, we targeted mainly traffic control on the intercity highway. Finally, we proposed a method for implementing traffic safety measures. For Penang, we proposed a measure to improve the signal phase and showed the effect of the measure on the micro traffic simulation. For Suphan Buri, we proposed the suitable measures for the danger points extracted by collecting the “HIYARI-HATTO” data of residents to the administration. In conclusion, in order to successfully implement the road safety measure based on the "information sharing traffic safety measure", the process for social implementation of the road safety measures should be consistent and carried out repeatedly. In particular, by clarifying specific issues based on local context in South-East Asian countries, the stakeholders, not only such as government sectors but also local citizens can share information regarding road safety and select appropriate countermeasures. Finally, we could propose this approach to the administration that had the authority.Keywords: information sharing road safety measure, social implementation, South-East Asia, HIYARI-HATTO
Procedia PDF Downloads 14999 Investigation of the Cognition Factors of Fire Response Performances Based on Survey
Authors: Jingjing Yan, Gengen He, Anahid Basiri
Abstract:
The design of an indoor navigation system for fire evacuation support requires not only physical feasibility but also a relatively thorough consideration of the human factors. This study has taken a survey to investigate the fire response performances (FRP) of the indoor occupants in age of 20s, virtually in an environment for their routine life, focusing on the aspects of indoor familiarity (spatial cognition), psychological stress and decision makings. For indoor familiarity, it is interested in three factors, i.e., the familiarity to exits and risky places as well as the satisfaction degree of the current indoor sign installation. According to the results, males have a higher average familiarity with the indoor exits while both genders have a relatively low level of risky place awareness. These two factors are positively correlated with the satisfaction degree of the current installation of the indoor signs, and this correlation is more evident for the exit familiarity. The integration of the height factor with the other two indoor familiarity factors can improve the degree of indoor sign satisfaction. For psychological stress, this study concentrates on the situated cognition of moving difficulty, nervousness, and speed reduction when using a bending posture during the fire evacuation to avoid smoke inhalation. The results have shown that both genders have a similar mid-level of hardness sensation. The females have a higher average level of nervousness, while males have a higher average level of speed reduction sensation. This study has assumed that the growing indoor spatial cognition can help ease the psychological hardness and nervousness. However, it only seems to be true after reaching a certain level. When integrating the effects from indoor familiarity and the other two psychological factors, the correlation to the sensation of speed change can be strengthened, based on a stronger positive correlation with the integrated factors. This study has also investigated the participants’ attitude to the navigation support during evacuation, and the majority of the participants have shown positive attitudes. For following the guidance under some extreme cases, i.e., changing to a longer path and to an alternative exit, the majority of the participants has shown the confidence of keeping trusting the guidance service. These decisions are affected by the combined influences from indoor familiarity, psychological stress, and attitude of using navigation service. For the decision time of the selected extreme cases, it costs more time in average for deciding to use a longer route than to use an alternative exit, and this situation is more evident for the female participants. This requires further considerations when designing a personalized smartphone-based navigation app. This study has also investigated the calming factors for people being trapped during evacuation. The top consideration is the distance to the nearest firefighters, and the following considerations are the current fire conditions in the surrounding environment and the locations of all firefighters. The ranking of the latter two considerations is very gender-dependent according to the results.Keywords: fire response performances, indoor spatial cognition, situated cognition, survey analysis
Procedia PDF Downloads 14398 The Complementary Effect of Internal Control System and Whistleblowing Policy on Prevention and Detection of Fraud in Nigerian Deposit Money Banks
Authors: Dada Durojaye Joshua
Abstract:
The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection
Procedia PDF Downloads 8097 Complementary Effect of Wistleblowing Policy and Internal Control System on Prevention and Detection of Fraud in Nigerian Deposit Money Banks
Authors: Dada Durojaye Joshua
Abstract:
The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection
Procedia PDF Downloads 7296 Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria
Authors: Gift Udoh, Diane S. Rohlman, Benjamin Sindt
Abstract:
BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information.Keywords: pesticide exposure, pesticide safety, nigeria, rural farming, pesticide education
Procedia PDF Downloads 17795 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults
Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer
Abstract:
Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking
Procedia PDF Downloads 20394 Multi-Agent System Based Distributed Voltage Control in Distribution Systems
Authors: A. Arshad, M. Lehtonen. M. Humayun
Abstract:
With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids
Procedia PDF Downloads 31293 Loss Quantification Archaeological Sites in Watershed Due to the Use and Occupation of Land
Authors: Elissandro Voigt Beier, Cristiano Poleto
Abstract:
The main objective of the research is to assess the loss through the quantification of material culture (archaeological fragments) in rural areas, sites explored economically by machining on seasonal crops, and also permanent, in a hydrographic subsystem Camaquã River in the state of Rio Grande do Sul, Brazil. The study area consists of different micro basins and differs in area, ranging between 1,000 m² and 10,000 m², respectively the largest and the smallest, all with a large number of occurrences and outcrop locations of archaeological material and high density in intense farm environment. In the first stage of the research aimed to identify the dispersion of points of archaeological material through field survey through plot points by the Global Positioning System (GPS), within each river basin, was made use of concise bibliography on the topic in the region, helping theoretically in understanding the old landscaping with preferences of occupation for reasons of ancient historical people through the settlements relating to the practice observed in the field. The mapping was followed by the cartographic development in the region through the development of cartographic products of the land elevation, consequently were created cartographic products were to contribute to the understanding of the distribution of the absolute materials; the definition and scope of the material dispersed; and as a result of human activities the development of revolving letter by mechanization of in situ material, it was also necessary for the preparation of materials found density maps, linking natural environments conducive to ancient historical occupation with the current human occupation. The third stage of the project it is for the systematic collection of archaeological material without alteration or interference in the subsurface of the indigenous settlements, thus, the material was prepared and treated in the laboratory to remove soil excesses, cleaning through previous communication methodology, measurement and quantification. Approximately 15,000 were identified archaeological fragments belonging to different periods of ancient history of the region, all collected outside of its environmental and historical context and it also has quite changed and modified. The material was identified and cataloged considering features such as object weight, size, type of material (lithic, ceramic, bone, Historical porcelain and their true association with the ancient history) and it was disregarded its principles as individual lithology of the object and functionality same. As observed preliminary results, we can point out the change of materials by heavy mechanization and consequent soil disturbance processes, and these processes generate loading of archaeological materials. Therefore, as a next step will be sought, an estimate of potential losses through a mathematical model. It is expected by this process, to reach a reliable model of high accuracy which can be applied to an archeological site of lower density without encountering a significant error.Keywords: degradation of heritage, quantification in archaeology, watershed, use and occupation of land
Procedia PDF Downloads 27792 Development and Preliminary Testing of the Dutch Version of the Program for the Education and Enrichment of Relational Skills
Authors: Sakinah Idris, Gabrine Jagersma, Bjorn Jaime Van Pelt, Kirstin Greaves-Lord
Abstract:
Background: The PEERS (Program for the Education and Enrichment of Relational Skills) intervention can be considered a well-established, evidence-based intervention in the USA. However, testing the efficacy of cultural adaptations of PEERS is still ongoing. More and more, the involvement of all stakeholders in the development and evaluation of interventions is acknowledged as crucial for the longer term implementation of interventions across settings. Therefore, in the current project, teens with ASD (Autism Spectrum Disorder), their neurotypical peers, parents, teachers, as well as clinicians were involved in the development and evaluation of the Dutch version of PEERS. Objectives: The current presentation covers (1) the formative phase and (2) the preliminary adaptation test phase of the cultural adaptation of evidence-based interventions. In the formative phase, we aim to describe the process of adaptation of the PEERS program to the Dutch culture and care system. In the preliminary adaptation phase, we will present results from the preliminary adaptation test among 32 adolescents with ASD. Methods: In phase 1, a group discussion on common vocabulary was conducted among 70 teenagers (and their teachers) from special and regular education aged 12-18 years old. This inventory concerned 14 key constructs from PEERS, e.g., areas of interests, locations for making friends, common peer groups and crowds inside and outside of school, activities with friends, commonly used ways for electronic communication, ways for handling disagreements, and common teasing comebacks. Also, 15 clinicians were involved in the translation and cultural adaptation process. The translation and cultural adaptation process were guided by the research team, and who included input and feedback from all stakeholders through an iterative feedback incorporation procedure. In phase 2, The parent-reported Social Responsiveness Scale (SRS), the Test of Adolescent Social Skills Knowledge (TASSK), and the Quality of Socialization Questionnaire (QSQ) were assessed pre- and post-intervention to evaluate potential treatment outcome. Results: The most striking cultural adaptation - reflecting the standpoints of all stakeholders - concerned the strategies for handling rumors and gossip, which were suggested to be taught using a similar approach as the teasing comebacks, more in line with ‘down-to-earth’ Dutch standards. The preliminary testing of this adapted version indicated that the adolescents with ASD significantly improved their social knowledge (TASSK; t₃₁ = -10.9, p < .01), social experience (QSQ-Parent; t₃₁ = -4.2, p < .01 and QSQ-Adolescent; t₃₂ = -3.8, p < .01), and in parent-reported social responsiveness (SRS; t₃₃ = 3.9, p < .01). In addition, subjective evaluations of teens with ASD, their parents and clinicians were positive. Conclusions: In order to further scrutinize the effectiveness of the Dutch version of the PEERS intervention, we recommended performing a larger scale randomized control trial (RCT) design, for which we provide several methodological considerations.Keywords: cultural adaptation, PEERS, preliminary testing, translation
Procedia PDF Downloads 16891 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges
Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström
Abstract:
The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.Keywords: operator, process control, energy system, sustainability, future control room, skill
Procedia PDF Downloads 9590 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 4889 Influence of Urban Design on Pain and Disability in Women with Chronic Low Back Pain in Urban Cairo
Authors: Maha E. Ibrahim, Mona Abdel Aziz
Abstract:
Background: Chronic low back pain (CLBP) in urban communities represents a challenge to healthcare systems worldwide. The traditional biomedical approach to back pain has been particularly inadequate. Failure of the biomedical model to explain the poor correlation between pain and disability on the one hand, and biological and physical factors that explain those symptoms on the other has led to the adoption of the biopsychosocial model, to recognize the reciprocal influence of physical, social and psychological factors implicated in CLBP, a condition that shows higher prevalence among women residing in urban areas. Urban design of the built community has been shown to exert a significant influence on physical and psychological health. However, little research has investigated the relationship between elements of the built environment, and the level of pain and disability of women with CLBP. As Egypt embarks on building a new capital city, and new settlements proliferate, better understanding of this relationship could greatly reduce the economic and human costs of this widespread medical problem for women. Methods: This study was designed as an exploratory mixed qualitative and quantitative study. Twenty-Six women with CLBP living in two neighborhoods in Cairo, different in their urban structure, but adjacent in their locations (Old Maadi and New Maadi) were interviewed using semi-structured interviews (8 from Old Maadi and 18 from New Maadi). Located in the South of Cairo, New Maadi is a neighborhood with the characteristic modern urban style (narrow streets and tall, adjacent buildings), while Old Maadi is known for being greener, quieter and more relaxed than the usual urban districts of Cairo. The interviews examined their perceptions of the built environment, including building shapes and colors and street light, as well as their sense of safety and comfort, and how it affects their physical and psychological health in general, and their back condition in particular. In addition, they were asked to rate their level of pain and to fill the Oswestry Disability Index (ODI), and the General Health Questionnaire (GHQ-12) to rate their level of disability and psychological status, respectively. Results: Women in both districts had moderate to severe pain and moderate disability with no significant differences between the two districts. However, those living in New Maadi had significantly worse scores on the GHQ-12 than those living in Old Maadi. Most women did not feel that specific elements of the built environment affected their back pain, however, they expressed distress of the elements that were ugly, distorted or damaged, especially where there were no ways of avoiding or fixing them. Furthermore, most women affirmed that the unsightly and uncomfortable elements of their neighborhoods affected their mood states and were a constant source of stress. Conclusion: This exploratory study concludes that elements of the urban built environment do not exert a direct effect on CLBP. However, the perception of women regarding these elements does affect their mood states, and their levels of stress, making them a possible indirect cause of increased suffering in these women.Keywords: built environment, chronic back pain, disability, urban Cairo
Procedia PDF Downloads 14688 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication
Authors: Farhan A. Alenizi
Abstract:
Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing
Procedia PDF Downloads 16087 Quantitative Comparisons of Different Approaches for Rotor Identification
Authors: Elizabeth M. Annoni, Elena G. Tolkacheva
Abstract:
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors
Procedia PDF Downloads 32486 In vitro Evaluation of Immunogenic Properties of Oral Application of Rabies Virus Surface Glycoprotein Antigen Conjugated to Beta-Glucan Nanoparticles in a Mouse Model
Authors: Narges Bahmanyar, Masoud Ghorbani
Abstract:
Rabies is caused by several species of the genus Lyssavirus in the Rhabdoviridae family. The disease is deadly encephalitis transmitted from warm-blooded animals to humans, and domestic and wild carnivores play the most crucial role in its transmission. The prevalence of rabies in poor areas of developing salinities is constantly posed as a global threat to public health. According to the World Health Organization, approximately 60,000 people die yearly from rabies. Of these, 60% of deaths are related to the Middle East. Although rabies encephalitis is incurable to date, awareness of the disease and the use of vaccines is the best way to combat the disease. Although effective vaccines are available, there is a high cost involved in vaccine production and management to combat rabies. Increasing the prevalence and discovery of new strains of rabies virus requires the need for safe, effective, and as inexpensive vaccines as possible. One of the approaches considered to achieve the quality and quantity expressed through the manufacture of recombinant types of rabies vaccine. Currently, livestock rabies vaccines are used only in inactivated or live attenuated vaccines, the process of inactivation of which pays attention to considerations. The rabies virus contains a negatively polarized single-stranded RNA genome that encodes the five major structural genes (N, P, M, G, L) from '3 to '5 . Rabies virus glycoprotein G, the major antigen, can produce the virus-neutralizing antibody. N-antigen is another candidate for developing recombinant vaccines. However, because it is within the RNP complex of the virus, the possibility of genetic diversity based on different geographical locations is very high. Glycoprotein G is structurally and antigenically more protected than other genes. Protection at the level of its nucleotide sequence is about 90% and at the amino acid level is 96%. Recombinant vaccines, consisting of a pathogenic subunit, contain fragments of the protein or polysaccharide of the pathogen that have been carefully studied to determine which of these molecules elicits a stronger and more effective immune response. These vaccines minimize the risk of side effects by limiting the immune system's access to the pathogen. Such vaccines are relatively inexpensive, easy to produce, and more stable than vaccines containing viruses or whole bacteria. The problem with these vaccines is that the pathogenic subunits may elicit a weak immune response in the body or may be destroyed before they reach the immune cells, which requires nanoparticles to overcome. Suitable for use as an adjuvant. Among these, biodegradable nanoparticles with functional levels are good candidates as adjuvants for the vaccine. In this study, we intend to use beta-glucan nanoparticles as adjuvants. The surface glycoprotein of the rabies virus (G) is responsible for identifying and binding the virus to the target cell. This glycoprotein is the major protein in the structure of the virus and induces an antibody response in the host. In this study, we intend to use rabies virus surface glycoprotein conjugated with beta-glucan nanoparticles to produce vaccines.Keywords: rabies, vaccines, beta glucan, nanoprticles, adjuvant, recombinant protein
Procedia PDF Downloads 1785 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 12784 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs
Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald
Abstract:
Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.Keywords: education and training, capacity building, evaluation, water and sanitation
Procedia PDF Downloads 31083 The Development of Quality Standards for the Qualification of Community Interpreters in Germany: A Needs Assessment
Authors: Jessica Terese Mueller, Christoph Breitsprecher, Mike Oliver Mosko
Abstract:
Due to an unusually high number of asylum seekers entering Germany over the course of the past few years, the need for community interpreters has increased dramatically, in order to make the communication between asylum seekers and various actors in social and governmental agencies possible. In the field of social work in particular, there are community interpreters who possess a wide spectrum of qualifications spanning from state-certified professional interpreters with graduate degrees to lay or ad-hoc interpreters with little to no formal training. To the best of our knowledge, Germany has no official national quality standards for the training of community interpreters at present, which would serve to professionalise this field as well as to assure a certain degree of quality in the training programmes offered. Given the current demand for trained community interpreters, there is a growing number of training programmes geared toward qualifying community interpreters who work with asylum seekers in Germany. These training programmes range from short one-day workshops to graduate programmes with specialisations in Community Interpreting. As part of a larger project to develop quality standards for the qualification of community interpreters working with asylum seekers in the field of social work, a needs assessment was performed in the city-state of Hamburg and the state of North Rhine Westphalia in the form of focus groups and individual interviews with relevant actors in the field in order to determine the content and practical knowledge needed for community interpreters from the perspectives of those who work in and rely on this field. More specifically, social workers, volunteers, certified language and cultural mediators, paid and volunteer community interpreters and asylum seekers were invited to take part in focus groups in both locations, and asylum seekers, training providers, researchers, linguists and other national and international experts were individually interviewed. The responses collected in these focus groups and interviews have been analysed using Mayring’s concept of content analysis. In general, the responses indicate a high degree of overlap related to certain categories as well as some categories which seemed to be of particular importance to certain groups individually, while showing little to no relevance for other groups. For example, the topics of accuracy and transparency of the interpretations, as well as professionalism and ethical concerns were touched on in some form in most groups. Some group-specific topics which are the focus of experts were topics related to interpreting techniques and more concretely described theoretical and practical knowledge which should be covered in training programmes. Social workers and volunteers generally concentrated on issues regarding the role of the community interpreters and the importance of setting and clarifying professional boundaries. From the perspective of service receivers, asylum seekers tended to focus on the importance of having access to interpreters who are from their home region or country and who speak the same regiolect, dialect or variety as they do in order to prevent misunderstandings or misinterpretations which might negatively affect their asylum status. These results indicate a certain degree of consensus with trainings offered internationally for community interpreters.Keywords: asylum seekers, community interpreting, needs assessment, quality standards, training
Procedia PDF Downloads 16582 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region
Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha
Abstract:
Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.Keywords: climate change, migration, rural productivity, semiarid region
Procedia PDF Downloads 35081 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 20880 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 35179 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters
Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola
Abstract:
Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR
Procedia PDF Downloads 7678 Creating Moments and Memories: An Evaluation of the Starlight 'Moments' Program for Palliative Children, Adolescents and Their Families
Authors: C. Treadgold, S. Sivaraman
Abstract:
The Starlight Children's Foundation (Starlight) is an Australian non-profit organisation that delivers programs, in partnership with health professionals, to support children, adolescents, and their families who are living with a serious illness. While supporting children and adolescents with life-limiting conditions has always been a feature of Starlight's work, providing a dedicated program, specifically targeting and meeting the needs of the paediatric palliative population, is a recent area of focus. Recognising the challenges in providing children’s palliative services, Starlight initiated a research and development project to better understand and meet the needs of this group. The aim was to create a program which enhances the wellbeing of children, adolescents, and their families receiving paediatric palliative care in their community through the provision of on-going, tailored, positive experiences or 'moments'. This paper will present the results of the formative evaluation of this unique program, highlighting the development processes and outcomes of the pilot. The pilot was designed using an innovation methodology, which included a number of research components. There was a strong belief that it needed to be delivered in partnership with a dedicated palliative care team, helping to ensure the best interests of the family were always represented. This resulted in Starlight collaborating with both the Victorian Paediatric Palliative Care Program (VPPCP) at the Royal Children's Hospital, Melbourne, and the Sydney Children's Hospital Network (SCHN) to pilot the 'Moments' program. As experts in 'positive disruption', with a long history of collaborating with health professionals, Starlight was well placed to deliver a program which helps children, adolescents, and their families to experience moments of joy, connection and achieve their own sense of accomplishment. Building on Starlight’s evidence-based approach and experience in creative service delivery, the program aims to use the power of 'positive disruption' to brighten the lives of this group and create important memories. The clinical and Starlight team members collaborate to ensure that the child and family are at the centre of the program. The design of each experience is specific to their needs and ensures the creation of positive memories and family connection. It aims for each moment to enhance quality of life. The partnership with the VPPCP and SCHN has allowed the program to reach families across metropolitan and regional locations. In late 2019 a formative evaluation of the pilot was conducted utilising both quantitative and qualitative methodologies to document both the delivery and outcomes of the program. Central to the evaluation was the interviews conducted with both clinical teams and families in order to gain a comprehensive understanding of the impact of and satisfaction with the program. The findings, which will be shared in this presentation, provide practical insight into the delivery of the program, the key elements for its success with families, and areas which could benefit from additional research and focus. It will use stories and case studies from the pilot to highlight the impact of the program and discuss what opportunities, challenges, and learnings emerged.Keywords: children, families, memory making, pediatric palliative care, support
Procedia PDF Downloads 9977 Outdoor Thermal Comfort Strategies: The Case of Cool Facades
Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa
Abstract:
Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling
Procedia PDF Downloads 92