Search results for: model transformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18082

Search results for: model transformation

16882 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 40
16881 Similar Correlation of Meat and Sugar to Global Obesity Prevalence

Authors: Wenpeng You, Maciej Henneberg

Abstract:

Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.

Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance

Procedia PDF Downloads 306
16880 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 359
16879 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML

Procedia PDF Downloads 129
16878 The Discriminate Analysis and Relevant Model for Mapping Export Potential

Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban

Abstract:

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Keywords: export strategy, modeling export, calibration, export promotion

Procedia PDF Downloads 498
16877 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 111
16876 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 640
16875 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam

Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard

Abstract:

Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.

Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers

Procedia PDF Downloads 112
16874 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
16873 Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis

Procedia PDF Downloads 257
16872 The Grand Technological Promise in Norwegian Child Welfare Services: Social Workers’ Experiences and Expectations

Authors: Ida Bruheim Jensen, Hulda Mjöll Gunnarsdottir, Ingunn T. Ellingsen

Abstract:

Digital government is often seen as an enabler or even driver of transformation of public administration, with the objective of creating public value. The increasing use of digital solutions in public services comes with great expectations of new and/or more efficient service provision. Digitalizing public sector services involve multi-level implementation. It involves national policy negotiations and decisions of digital government solutions. It involves co-creation/-production of ideas where planning, design, and implementation involves several groups of actors targeting end-users. Norway is among the most digitalised countries in the world, and Government spendings on digital technologies in public services are high compared to other OECD countries. This contribution studies an ongoing digital transformation in the Norwegian child welfare services. DigiBarnevern (Digi child welfare) is a nationwide project promising better and more efficient child welfare services through various digital technologies. The digitalization process, which is managed by the state and municipalities, is still in its early stages, and as of 2022, only a few services are operative. Digital technologies such as DigiBarnevern are implemented with promises of qualitatively improving child protection work, making the services more effective, foster user participation, and increase availability. There is limited research on the implications of using digital technologies in child protection work. We aim to present findings from an ongoing research project (2022-2024). Drawing on data from focus group interviews with social workers in 5 municipal child welfare services in Norway, we explore social workers’ experiences and expectations towards using digital technologies in child welfare services. Technological solutions may change the services and child protection work in numerous ways. Potential points of departure for discussion are how technologies may change the relationships between social workers, children, youth, and their families, how technologies can alter and obscure responsibilities, and how technologies may demand digital competence among social workers and service recipients.

Keywords: child welfare, social work, technology, digitalisation

Procedia PDF Downloads 92
16871 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 29
16870 Optimising Post-Process Heat Treatments of Selective Laser Melting-Produced Ti-6Al-4V Parts to Achieve Superior Mechanical Properties

Authors: Gerrit Ter Haar, Thorsten Becker, Deborah Blaine

Abstract:

The Additive Manufacturing (AM) process of Selective Laser Melting (SLM) has seen an exponential growth in sales and development in the past fifteen years. Whereas the capability of SLM was initially limited to rapid prototyping, progress in research and development (R&D) has allowed SLM to be capable of fully functional parts. This technology is still at a primitive stage and technical knowledge of the vast number of variables influencing final part quality is limited. Ongoing research and development of the sensitive printing process and post processes is of utmost importance in order to qualify SLM parts to meet international standards. Quality concerns in Ti-6Al-4V manufactured through SLM has been identified, which include: high residual stresses, part porosity, low ductility and anisotropic mechanical properties. Whereas significant quality improvements have been made through optimising printing parameters, research indicates as-produced part ductility to be a major limiting factor when compared to its wrought counterpart. This study aims at achieving an in-depth understanding of the underlining links between SLM produced Ti-6Al-4V microstructure and its mechanical properties. Knowledge of microstructural transformation kinetics of Ti-6Al-4V allows for the optimisation of post-process heat treatments thereby achieving the required process route to manufacture high quality SLM produced Ti-6Al-4V parts. Experimental methods used to evaluate the kinematics of microstructural transformation of SLM Ti-6Al-4V are: optical microscopy and electron backscatter diffraction. Results show that a low-temperature heat treatment is capable of transforming the as-produced, martensitic microstructure into a duel-phase microstructure exhibiting both a high strength and improved ductility. Furthermore, isotropy of mechanical properties can be achieved through certain annealing routes. Mechanical properties identical to that of wrought Ti-6Al-4V can, therefore, be achieved through an optimised process route.

Keywords: EBSD analysis, heat treatments, microstructural characterisation, selective laser melting, tensile behaviour, Ti-6Al-4V

Procedia PDF Downloads 421
16869 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.

Keywords: erosion, prediction, elbow, computational fluid dynamics

Procedia PDF Downloads 157
16868 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
16867 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
16866 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context

Authors: Selin Guney, Andres Riquelme

Abstract:

The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.

Keywords: bio-economic, fisheries, GAM, production

Procedia PDF Downloads 252
16865 Recent Legal Changes in Turkish Commercial Law to Be a Part of International Markets and Their Results

Authors: Ibrahim Arslan

Abstract:

Since 1984, Turkey has experienced a significant transformation in legal and economic matters. The most consequential examples of this transformation in recent years are the renewal of the Commercial Code and the Check Act. Nowadays, the commercial activity is not limited within the boundaries of the country; on the contrary, as required by the global economy, it has an international dimension. For this reason, unlike some other legal principles, the rules regulating the commercial life should be compatible with the international standards as much as possible. Otherwise the development possibility in the global markets will be limited. The Check Act has been adopted in 2009 and the Commercial Code has been adopted in 2011. The Commercial Code has been entered into force on 1 July 2012. The international dimension of check is in-disputable for it is based on the Geneva Convention. However, the Turkish business life has created a unique application of this legal tool. This application is called “post-date” checks. Indeed the majority of the checks being used in the market are post-dated checks. The holders of these checks have waited the date written on the check for presentation and collection. Thus, the actual situation has occurred. This actual situation has been legitimized via Check Act No. 5941 and post dated checks have gained a legal status. In the preparation of the new the Turkish Commercial Code one of the goals is "to ensure that the Turkish commercial law becomes a part of the international market". To achieve this goal, significant changes have been made especially concerning the independent external audition of the corporations, the board structure and public disclosure regulations. These changes aim to facilitate the internationalization of Turkish corporations as well as intensification of foreign direct investments through foreign capital. Although the target has been determined this way, after the adoption but five days before the entry into force of the Turkish Commercial Code No. 6102, a law made backward going alterations concerning independent external audition and public disclosure regulations. Turkish Commercial Code has been currently in force with its altered status. Both the regulations in the Check Act as well as the changes in the Commercial Code are not compatible with the goals introduced by rationale “to ensure Turkish commercial law to be a part of the international market” as such.

Keywords: Turkish Commercial Code No. 6102, Turkish Check Act, “post-date” checks, legal changes

Procedia PDF Downloads 294
16864 Zoning and Planning Response to Low-Carbon Development Transition in the Chengdu-Chongqing City Clusters, China

Authors: Hanyu Wang, Guangdong Wang

Abstract:

County-level areas serve as vital spatial units for advancing new urbanization and implementing the principles of low-carbon development, representing critical regions where conflicts between the two are pronounced. Using the 142 county-level units in the Chengdu-Chongqing city clusters as a case study, a coupled coordination model is employed to investigate the coupled coordination relationship and its spatiotemporal evolution between county-level new urbanization and low-carbon development levels. Results indicate that (1) from 2005 to 2020, the overall levels of new urbanization and low-carbon development in the Chengdu-Chongqing city clusters showed an upward trend but with significant regional disparities. The new urbanization level exhibited a spatial differentiation pattern of "high in the suburban areas, low in the distant suburbs, and some counties standing out." The temporal change in low-carbon development levels was not pronounced, yet spatial disparities were notable. (2) The overall coupling coordination degree between new urbanization and low-carbon development is transitioning from barely coordinated to moderately coordinated. The lag in new urbanization levels serves as a primary factor constraining the coordinated development of most counties. (3) Based on the temporal evolution of development states, all county units can be categorized into four types: coordinated demonstration areas, synergistic improvement areas, low-carbon transformation areas, and development lag areas. The research findings offer crucial reference points for spatial planning and the formulation of low-carbon development policies.

Keywords: county units, coupling coordination, low-carbon development, new urbanization

Procedia PDF Downloads 86
16863 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity

Authors: Yuri Laevsky, Tatyana Nosova

Abstract:

The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.

Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation

Procedia PDF Downloads 301
16862 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 365
16861 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems

Authors: Shahrokh Barati

Abstract:

In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.

Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems

Procedia PDF Downloads 468
16860 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
16859 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making

Authors: Babek Erdebilli

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model

Procedia PDF Downloads 651
16858 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
16857 Forecasting Model to Predict Dengue Incidence in Malaysia

Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen

Abstract:

Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.

Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting

Procedia PDF Downloads 485
16856 Development of Creatively Integrated Teaching Skills Using Information and Communication Technology for Professional Teacher

Authors: Siwanit Autthawuttikul, Prakob Koraneekid, Sayamon Insa-ard

Abstract:

The purposes of this research were to development creatively integrated teaching skills using Information and Communication Technology (ICT) for professional teacher in schools under the education area of the basic education commission, ministry of education both schools under the office of primary education and those under The office of secondary education in eight western region provinces of Thailand. This is useful in defining a vision for the school strategy and restructuring schools in addition, teachers will have developed skills in teaching creative integrated ICT. The research methodology comprises quantitative and qualitative data collection. The Baseline Survey, focus group for discussions and then the model was developed creatively integrated teaching skills using ICT. The findings showed that 7 elements were important: (1) Academy Transformation (2) Information Technology Infrastructure (3) Personal Development (4) Supervision, Monitoring and Evaluation (5) Motivating and Rewarding (6) Important factor affecting the success of teaching integrated with ICT were knowledge, skills, attitudes and (7) The role of the individual concerned. The comparison creatively integrated teaching skills before and after participating in the overall shows that the average creatively integrated teaching skills using ICT after attending the event is 3.27, and standard deviation was 0.56, higher than before which is 2.60 and the standard deviation was 0.56. There are significant differences significant statistically level of .05. The final average score of the evaluation plan design creatively integrated teaching skills using ICT teachers' average score was 26.94 at the high levels.

Keywords: integrated curriculum, information and communications technology, teachers in the western region, schools

Procedia PDF Downloads 445
16855 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.

Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering

Procedia PDF Downloads 438
16854 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity

Authors: Sujit K. Basak

Abstract:

The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data was analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks namely Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research workload and productivity followed by perceived usefulness and perceived ease of use.

Keywords: technology acceptance model, training needs assessment model, literature review software, research productivity

Procedia PDF Downloads 502
16853 A Spatial Approach to Model Mortality Rates

Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang

Abstract:

Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.

Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection

Procedia PDF Downloads 171