Search results for: fuzzy genetic network programming
6302 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 2106301 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students
Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee
Abstract:
Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.Keywords: hands-on activity, STEM education, computer programming, metal work
Procedia PDF Downloads 4676300 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 1926299 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization
Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva
Abstract:
This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.Keywords: genetic algorithms, textile industry, job scheduling, optimization
Procedia PDF Downloads 1596298 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding
Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand
Abstract:
The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis
Procedia PDF Downloads 2276297 Genetic Structuring of Four Tectona grandis L. F. Seed Production Areas in Southern India
Authors: P. M. Sreekanth
Abstract:
Teak (Tectona grandis L. f.) is a tree species indigenous to India and other Southeastern countries. It produces high-value timber and is easily established in plantations. Reforestation requires a constant supply of high quality seeds. Seed Production Areas (SPA) of teak are improved stands used for collection of open-pollinated quality seeds in large quantities. Information on the genetic diversity of major teak SPAs in India is scanty. The genetic structure of four important seed production areas of Kerala State in Southern India was analyzed employing amplified fragment length polymorphism markers using ten selective primer combinations on 80 samples (4 populations X 20 trees). The study revealed that the gene diversity of the SPAs varied from 0.169 (Konni SPA) to 0.203 (Wayanad SPA). The percentage of polymorphic loci ranged from 74.42 (Parambikulam SPA) to 84.06 (Konni SPA). The mean total gene diversity index (HT) of all the four SPAs was 0.2296 ±0.02. A high proportion of genetic diversity was observed within the populations (83%) while diversity between populations was lower (17%) (GST = 0.17). Principal coordinate analysis and STRUCTURE analysis of the genotypes indicated that the pattern of clustering was in accordance with the origin and geographic location of SPAs, indicating specific identity of each population. A UPGMA dendrogram was prepared and showed that all the twenty samples from each of Konni and Parambikulam SPAs clustered into two separate groups, respectively. However, five Nilambur genotypes and one Wayanad genotype intruded into the Konni cluster. The higher gene flow estimated (Nm = 2.4) reflected the inclusion of Konni origin planting stock in the Nilambur and Wayanad plantations. Evidence for population structure investigated using 3D Principal Coordinate Analysis of FAMD software 1.30 indicated that the pattern of clustering was in accordance with the origin of SPAs. The present study showed that assessment of genetic diversity in seed production plantations can be achieved using AFLP markers. The AFLP fingerprinting was also capable of identifying the geographical origin of planting stock and there by revealing the occurrence of the errors in genotype labeling. Molecular marker-based selective culling of genetically similar trees from a stand so as to increase the genetic base of seed production areas could be a new proposition to improve quality of seeds required for raising commercial plantations of teak. The technique can also be used to assess the genetic diversity status of plus trees within provenances during their selection for raising clonal seed orchards for assuring the quality of seeds available for raising future plantations.Keywords: AFLP, genetic structure, spa, teak
Procedia PDF Downloads 3096296 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 176295 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1536294 A New Mathematical Model for Scheduling Preventive Maintenance and Renewal Projects of Multi-Unit Systems; Application to Railway Track
Authors: Farzad Pargar
Abstract:
We introduce the preventive maintenance and renewal scheduling problem for a multi-unit system over a finite and discretized time horizon. Given the latest possible time for carrying out the next maintenance and renewal projects after the previous ones and considering several common set-up costs, the introduced scheduling model tries to minimize the cost of projects by grouping them and simultaneously finding the optimal balance between doing maintenance and renewal. We present a 0-1 pure integer linear programming that determines which projects should be performed together on which location and in which period (e.g., week or month). We consider railway track as a case for our study and test the performance of the proposed model on a set of test problems. The experimental results show that the proposed approach performs well.Keywords: maintenance, renewal, scheduling, mathematical programming model
Procedia PDF Downloads 6896293 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization
Authors: B. Marasović, S. Pivac, S. V. Vukasović
Abstract:
Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.Keywords: Croatian capital market, Markowitz model, fractional quadratic programming, portfolio optimization, transaction costs
Procedia PDF Downloads 3896292 Advances in Sesame Molecular Breeding: A Comprehensive Review
Authors: Micheale Yifter Weldemichael
Abstract:
Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering
Procedia PDF Downloads 436291 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions
Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali
Abstract:
The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor
Procedia PDF Downloads 1296290 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits
Authors: Sonia Bedhiaf-Romdhani
Abstract:
The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.Keywords: sheep, farming systems, diversity, SNPs.
Procedia PDF Downloads 1486289 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling
Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin
Abstract:
Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.Keywords: breast cancer, metastasis, PPI networks, protein conformational changes
Procedia PDF Downloads 2456288 Statistical Analysis to Select Evacuation Route
Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim
Abstract:
Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route
Procedia PDF Downloads 5046287 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes
Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng
Abstract:
To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation
Procedia PDF Downloads 606286 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 1416285 Secure Network Coding against Content Pollution Attacks in Named Data Network
Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang
Abstract:
Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.Keywords: named data networking, content polloution attack, network coding signature, internet architecture
Procedia PDF Downloads 3386284 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 4386283 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts
Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira
Abstract:
In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design
Procedia PDF Downloads 1166282 A Mixed Integer Linear Programming Model for Container Collection
Authors: J. Van Engeland, C. Lavigne, S. De Jaeger
Abstract:
In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.Keywords: container collection, crew scheduling, mixed integer linear programming, waste management
Procedia PDF Downloads 1366281 Investigation into Varied Inspection Utilization for Mass Customization
Authors: Trishen Naidoo, Anthony Walker, Shaniel Davrajh, Glen Bright
Abstract:
An investigation into on-line inspection was performed where research is focused on the use of varied inspection (as opposed to 100% inspection) for mass customization (MC). Manufacturers need new methods for quality control in mass customization, and these methods need to address some of the old problems such as over-inspection and bottlenecking. Due to the risks of varied inspection, many manufacturers do not implement it and rather opt for sampling methods. However, there are many advantages of varied inspection and can have applications in mass customization. A control system incorporating fuzzy logic (FL) control is used to perform the variations in inspection usage in a simulated environment. The proposed system can have a key impact in appraisal costs reduction and possibly work-in-process reduction in high variety environments.Keywords: appraisal costs, fuzzy logic, quality control, work-in-process
Procedia PDF Downloads 2336280 Barriers and Facilitators to Inclusive Programming for Children with Mental and/or Developmental Challenges: A Participatory Action Research of Perspectives from Families and Professionals
Authors: Minnie Y. Teng, Kathy Xie, Jarus Tal
Abstract:
Rationale: The traditional approach to community programs for children with mental and/or developmental challenges often involves segregation from typically-developing peers. However, studies show that inclusive education improves children’s quality of life, self-concept, and long term health outcomes. Investigating factors that influence inclusion can thus have important implications in the design and facilitation of community programs such that all children - across a spectrum of needs and abilities - may benefit. Objectives: This study explores barriers and facilitators to inclusive community programming for children aged 0 to 12 with developmental/mental challenges. Methods: Using a participatory-action research methodology, semi-structured focus groups and interviews will be used to explore perspectives of sighted students, instructors, and staff. Data will be transcribed and coded thematically. Practice Implications or Results: By having a deeper understanding of the barriers and facilitators to inclusive programming in the community, researchers can work with the broader community to facilitate inclusion in children’s community programs. Conclusions: Expanding inclusive practices may improve the health and wellbeing of the pediatric populations with disabilities, which consistently reports lower levels of participation. These findings may help to identify gaps in existing practices and ways to approach them.Keywords: aquatic programs, children, disabilities, inclusion, community programs
Procedia PDF Downloads 1176279 Addressing Scheme for IOT Network Using IPV6
Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher
Abstract:
The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.Keywords: addressing, IoT, IPv6, network, nodes
Procedia PDF Downloads 2966278 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi
Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu
Abstract:
Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect
Procedia PDF Downloads 1826277 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 2976276 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach
Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma
Abstract:
Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.Keywords: clustering, cluster-head, mini-group, stability period
Procedia PDF Downloads 3586275 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2766274 Genomic Identification of Anisakis Simplex Larvae by PCR-RAPD
Authors: Fumiko Kojima, Shuji Fujimoto
Abstract:
Anisakiasis is a disease caused by infection with an anisakid larvae, mostly Anisakis simplex. The larvae commonly infect in marine fish and the disease is frequently reported in areas of the world where fish is consumed raw, lightly pickled or salted. In Japan, people have the habit of eating raw fish such as ‘sushi’ or ‘sashimi’, so they have more chance of infection with larvae of anisakid nematodes. There are three sibling species in A. simplex larvae, namely, A. simplex sensu stricto (Asss), A. pegreffii (Ap) and A. simplex C. It was revealed that Ap is dominant among the larvae from fish (Scomber japonics) in the Japan Sea side and Asss is dominant among those of the Pacific Ocean side conversely. Although anisakiasis has happened in Japan among both the Japan Sea side area and the Pacific Ocean side area. The aim of this study was to investigate genetic variations between the siblings (Asss and Ap) and within the same sibling species by random amplified polymorphic DNA (RAPD) technique. In order to investigate the genetic difference among the each A. simplex larvae, we used RAPD technique to differentiate individuals of A. simplex obtained from Scomber japonics fish those were caught in the Japan sea (Goto Islands in Nagasaki Prefecture) and the cost of Pacific Ocean (Kanagawa Prefecture). The RAPD patterns of the control DNA (Genus Raphidascaris) were markedly different from those of the A. simplex. There were differences in amplification patterns between Asss and Ap. The RAPD patterns for larvae obtained from fish of the same sea were somewhat different and variations were detected even among larvae from the same fish. These results suggest the considerable high genetic variability between Asss and Ap and the possible existence of genetic variation within the sibling species.Keywords: Anisakiasis in Japan, Anisakis simplex, genomic identification, PCR-RAPD
Procedia PDF Downloads 1826273 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, markov chain, optimization, waste water
Procedia PDF Downloads 416