Search results for: identification with work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16058

Search results for: identification with work

15968 Identification of Lactic Acid Bacteria Isolated from Raw Camel Milk Produced in South of Morocco

Authors: Maha Alaoui Ismaili, Bouchta Saidi, Mohamed Zahar, Abed Hamama

Abstract:

112 lactic isolates were obtained from 15 samples of camel raw milk produced in Laayoune Boujdour Sakia-El Hamra region (South of Morocco). The main objective was the identification of species of lactic flora belonging to Lactococcus, Lactobacillus and Leuconostoc. Data obtained showed predominance of cocci among lactic isolates (86.6%) while lactic rods represented only 13.4%. With regard to genera identified, Enterococcus was the mostly found out (53.57%), followed by Lactococcus (28.57%), Lactobacillus (13.4%) and Leuconostoc (4.4 %). Identification of the lactic isolates according to their morphological, physiological, and biochemical characteristics led to differentiating 11 species with Lactococcus lactis ssp lactis biovar diacetylactis being the mostly encountered (24.1%) followed by Lactobacillus brevis (3.57%), Lactobacillus plantarum (3.57%), Lactobacillus delbrueckii subsp lactis (3.57%) and Lactococcus lactis subsp cremoris (2.67%).

Keywords: raw camel milk, south of morocco, lactic acid bacteria, identification

Procedia PDF Downloads 492
15967 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 231
15966 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 309
15965 Evidence of the Effect of the Structure of Social Representations on Group Identification

Authors: Eric Bonetto, Anthony Piermatteo, Fabien Girandola, Gregory Lo Monaco

Abstract:

The present contribution focuses on the effect of the structure of social representations on group identification. A social representation (SR) is defined as an organized and structured set of cognitions, produced and shared by members of a same group about a same social object. Within this framework, the central core theory establishes a structural distinction between central cognitions – or 'core' – and peripheral ones: the former are theoretically considered as more connected than the later to group members’ social identity and may play a greater role in SRs’ ability to allow group identification by means of a common vision of the object of representation. Indeed, the central core provides a reference point for the in-group as it constitutes a consensual vision that gives meaning to a social object particularly important to individuals and to the group. However, while numerous contributions clearly refer to the underlying role of SRs in group identification, there are only few empirical evidences of this aspect. Thus, we hypothesize an effect of the structure of SRs on group identification. More precisely, central cognitions (vs. peripheral ones) will lead to a stronger group identification. In addition, we hypothesize that the refutation of a cognition will lead to a stronger group identification than its activation. The SR mobilized here is that of 'studying' among a population of first-year undergraduate psychology students. Thus, a pretest (N = 82), using an Attribute-Challenge Technique, was designed in order to identify the central and the peripheral cognitions to use in the primings of our main study. The results of this pretest are in line with previous studies. Then, the main study (online; N = 184), using a social priming methodology, was based on a 2 (Structural status of the cognitions belonging to the prime: central vs. peripheral) x 2 (Type of prime: activation vs. refutation) experimental design in order to test our hypotheses. Results revealed, as expected, the main effect of the structure of the SR on group identification. Indeed, central cognitions trigger a higher level of identification than the peripheral ones. However, we observe neither effect of the type of prime, nor interaction effect. These results experimentally demonstrate for the first time the effect of the structure of SRs on group identification and indicate that central cognitions are more connected than peripheral ones to group members’ social identity. These results will be discussed considering the importance of understanding identity as a function of SRs and on their ability to potentially solve the lack of consideration of the definition of the group in Social Representations Theory.

Keywords: group identification, social identity, social representations, structural approach

Procedia PDF Downloads 191
15964 Radio Frequency Identification Chips in Colour Preference Tracking

Authors: A. Ballard

Abstract:

The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.

Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference

Procedia PDF Downloads 120
15963 Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens

Authors: Ayman El Behiry, Rasha Nabil Zahran, Reda Tarabees, Eman Marzouk, Musaad Al-Dubaib

Abstract:

Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.

Keywords: identification, mastitis pathogens, mass spectral, phenotypical

Procedia PDF Downloads 332
15962 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 249
15961 The Effect of Organizational Virtuousness on Nurses' Organizational Identification Level and Performance: The Mediating Role of Perceived Organizational Support

Authors: Feride Eskin Bacaksiz, Aytolan Yildirim

Abstract:

Practices voluntarily performed by organizations for their employees well-being, create an emotional imperative for employees in accordance with reciprocity norm. Changes in desired course occur in organizational outputs and attitudes towards organization among employees perceiving their organizations as virtuous and supportive. The aim of this study was to examine the effect of organizational virtuousness on performance and organizational identification levels of employees and mediating role of perceived organizational support in this relationship. The data of this descriptive and methodological study were collected from 336 nurses working in a public university hospital in 2015. Participant information form, Organizational Virtuousness, Perceived Organizational Support, Organizational Identification, and Employee Performance scales were used to collect the data. Descriptive, correlative, psychometric analyses and Structural Equation Modeling were performed for the data analysis. Most of the participants were female, under 30 years of age, graduated degrees and staff nurse. Mean scores obtained by the participants from scales were calculated as 3.43(SD=.99) for organizational virtuousness, 2.99 (SD=1.16) for perceived organizational support, 3.18 (SD=1.03) for organizational identification and 3.84 (SD=0.66) for employee performance. It was found that correlation between organizational virtuousness and employee performance regressed from r=0.64 to r=-0.01 and correlation between organizational virtuousness and organizational identification regressed from r=0.55 to r=-0.16 and became statistically non-significant (p < 0.05) via mediating role of perceived organizational support. According to the results, perceived organizational support assumes full mediation on the impact of organizational virtues of employee performance and organizational identification levels. Therefore, organizations, which intend to positively affect employees attitudes towards organization and their performance, should both extend organizational virtuous activities and affect perceptions of employees; whereas, employees should perceive that they are supported by their organization.

Keywords: employee performance, organizational identification, organizational virtuousness, perceived organizational support

Procedia PDF Downloads 364
15960 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
15959 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: speaker identification, acoustic-spectrographic method, non-native speech, performance evaluation

Procedia PDF Downloads 446
15958 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
15957 Acoustic Analysis for Comparison and Identification of Normal and Disguised Speech of Individuals

Authors: Surbhi Mathur, J. M. Vyas

Abstract:

Although the rapid development of forensic speaker recognition technology has been conducted, there are still many problems to be solved. The biggest problem arises when the cases involving disguised voice samples come across for the purpose of examination and identification. Such type of voice samples of anonymous callers is frequently encountered in crimes involving kidnapping, blackmailing, hoax extortion and many more, where the speaker makes a deliberate effort to manipulate their natural voice in order to conceal their identity due to the fear of being caught. Voice disguise causes serious damage to the natural vocal parameters of the speakers and thus complicates the process of identification. The sole objective of this doctoral project is to find out the possibility of rendering definite opinions in cases involving disguised speech by experimentally determining the effects of different disguise forms on personal identification and percentage rate of speaker recognition for various voice disguise techniques such as raised pitch, lower pitch, increased nasality, covering the mouth, constricting tract, obstacle in mouth etc by analyzing and comparing the amount of phonetic and acoustic variation in of artificial (disguised) and natural sample of an individual, by auditory as well as spectrographic analysis.

Keywords: forensic, speaker recognition, voice, speech, disguise, identification

Procedia PDF Downloads 368
15956 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

Authors: Rebecca Angeles

Abstract:

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis

Procedia PDF Downloads 444
15955 Influencer Marketing, Fan Satisfaction, Team Identification and Purchase Intention and Different Effects of Influencer Marketing: Influencer’s Personal Attributes and Their Add-value to Baseball Games

Authors: Shih-Ting Fu

Abstract:

This study aimed to investigate the influence of influencer marketing on fan satisfaction, purchase intention, and team identification. The research employed a questionnaire survey targeting the Chinese Professional Baseball League (CPBL). The sample included 205 participants, encompassing both existing CPBL fans and individuals with no prior baseball viewing habits. The survey assessed the impact of influencer marketing on participants' knowledge, attitudes, and behaviors related to the CPBL. Additionally, it evaluated team identification, fan satisfaction, and purchase intention. Data analysis using SPSS software aimed to identify correlations and effects among the variables. Findings revealed that influencer marketing has a significant positive impact on fan satisfaction, purchase intention, and team identification. Notably, further analysis indicated that the personal characteristics and charisma of influencers significantly influenced fans' perceptions, leading to increased purchase intention and satisfaction. This effect was even stronger than the influence of influencers' expertise and information dissemination regarding sports events or products.

Keywords: influencer marketing, fan satisfaction, team identification, purchase intention, Chinese professional baseball league (CPBL)

Procedia PDF Downloads 34
15954 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator

Procedia PDF Downloads 287
15953 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian

Authors: D. Beziakina, E. Bulgakova

Abstract:

This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 470
15952 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 299
15951 Risk Identification of Investment Feasibility in Indonesia’s Toll Road Infrastructure Investment

Authors: Christo Februanto Putra

Abstract:

This paper presents risk identification that affects investment feasibility on toll road infrastructure in Indonesia using qualitative methods survey based on the expert practitioner in investor, contractor, and state officials. The problems on infrastructure investment in Indonesia, especially on KPBU model contract, is many risk factors in the investment plan is not calculated in detail thoroughly. Risk factor is a value used to provide an overview of the risk level assessment of an event which is a function of the probability of the occurrence and the consequences of the risks that arise. As results of the survey which is to show which risk factors impacts directly to the investment feasibility and rank them by their impacts on the investment.

Keywords: risk identification, indonesia toll road, investment feasibility

Procedia PDF Downloads 280
15950 Chipless RFID Capacity Enhancement Using the E-pulse Technique

Authors: Haythem H. Abdullah, Hesham Elkady

Abstract:

With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system.

Keywords: chipless RFID, E-pulse, natural modes, resonators

Procedia PDF Downloads 80
15949 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 53
15948 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 135
15947 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 191
15946 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani

Authors: Daria Beziakina, Elena Bulgakova

Abstract:

The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers. The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language. The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 347
15945 Linear MIMO Model Identification Using an Extended Kalman Filter

Authors: Matthew C. Best

Abstract:

Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.

Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction

Procedia PDF Downloads 594
15944 Identification of Autism Spectrum Disorders in Day-Care Centres

Authors: Kenneth Larsen, Astrid Aasland, Synnve Schjølberg, Trond Diseth

Abstract:

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders emerging in early development characterized by impairment in social communication skills and a restricted, repetitive and stereotyped patterns of behavior and interests. Early identification and interventions potentially improve development and quality of life of children with ASD. Symptoms of ASD are apparent through the second year of life, yet diagnostic age are still around 4 years of age. This study explored whether symptoms associated with ASD are possible to identify in typical Norwegian day-care centers in the second year of life. Results of this study clearly indicates that most described symptoms also are identifiable by day-care staff, and that a short observation list of 5 symptoms clearly identify children with ASD from a sample of normal developing peers.

Keywords: autism, early identification, day-care, screening

Procedia PDF Downloads 392
15943 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System

Authors: Joon-Hoon Park

Abstract:

In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.

Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification

Procedia PDF Downloads 509
15942 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 327
15941 Identification of Parameters for Urban and Regional Level Infrastructure Development - A Theoretical Perspective: Case Study – Rail Based Mass Transit in Indian Cities

Authors: Chitresh Kumar, Santanu Gupta

Abstract:

The research work intends to understand the process of initiation, planning and development of capital-intensive urban area level infrastructure development in East Asian Cities (specific to Indian Cities). With the onset of emphasis on sustainable urban transport, self-financed urban local bodies, it has become of utmost important to identify infrastructure and projects on a priority basis, which provide optimal utility to the urban area. Through identification of Spatial, Demographic and Socio-Economic and Political Instability Parameters and their trends for the past 60 years at the urban area and state level, the paper attempts to identify the most suitable time period when initiation of the project would become economically and demographically viable for the city.

Keywords: urban planning, regional planning, mass transit, infrastructure development, spatial planning

Procedia PDF Downloads 556
15940 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 174
15939 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289