Search results for: binary
572 Paraoxonase 1 (PON 1) Arylesterase Activity and Apolipoprotein B: Predictors of Myocardial Infarction
Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha Vilas More
Abstract:
Background: Myocardial infarction (MI) is defined as myocardial cell death due to prolonged ischemia as a consequence of atherosclerosis. TC, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40, MI subjects and 40 healthy individuals in control group. PON 1 Arylesterase activity (ARE) was measured by using phenylacetate. Phenotyping was done by double substrate method, serum AOPP by using chloramine T and Apo B by Turbidimetric immunoassay. PON 1 ARE activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR, and RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 1 ARE activity with MI and multiple forward binary logistic regression showed PON 1 ARE activity and serum Apo B as an independent predictor of MI. Conclusions: Decrease in PON 1 ARE activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple binary logistic regression showed PON1 ARE activity and serum Apo B as an independent predictor of MI.Keywords: advanced oxidation protein product, apolipoprotein B, PON 1 arylesterase activity, myocardial infarction
Procedia PDF Downloads 266571 The Behavior of Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Mixture Affected by Thermal Radiation Field
Authors: Taha Zakaraia Abdel Wahid
Abstract:
In the present study, a development of the papers is introduced. The behavior of the unsteady non-equilibrium distribution functions for a rarefied gas mixture under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the rarefied gas mixture is determined for the first time. The non-equilibrium thermodynamic properties of the system is investigated. The results are applied to the Argon-Neon binary gas mixture, for various values of both of molar fraction parameters and radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior and the results are discussed.Keywords: radiation field, binary gas mixture, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics
Procedia PDF Downloads 452570 Monocytic Paraoxonase 2 (PON 2) Lactonase Activity Is Related to Myocardial Infarction
Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha V. More
Abstract:
Background: Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40 MI subjects as cases and 40 healthy as controls. Monocytic PON 2 Lactonase (LACT) activity was measured by using Dihydrocoumarine (DHC) as substrate. Phenotyping was done by method of Mogarekar MR et al, serum AOPP by modified method of Witko-Sarsat V et al and Apo B by Turbidimetric immunoassay. PON 2 LACT activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR & RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 2 LACT activity with MI and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI. Conclusions- Decrease in PON 2 LACT activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON 1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI.Keywords: advanced oxidation protein products, apolipoprotein-B, myocardial infarction, paraoxonase 2 lactonase
Procedia PDF Downloads 237569 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 93568 Views of the Self in Beast and Beauty K-Dramas: The South Korean Paradigm of Beauty
Authors: Patricia P. M. C. Lourenço
Abstract:
South Korean Entertainment Industry has reversed the gender binary through Beast and Beauty Korean dramas that perpetuate Korean unrealistic beauty standards by emphasizing freckles, acne, pimples, excessive weight, fizzy hair, glasses, and braces as ugly and unattractive, therefore in need of correction to fit into society’s pre-established beauty mould. This pursuit of physical beauty as a happiness goal only detracts singularity in favour of mundaneness, sustaining the illusion that unsightly women need to undergo a physical transformation to improve their lives while handsome, wealthy men need not do anything more than altruistically accept them for who they really are inside. Five Beast and Beauty dramas were analysed for this paper. The assessment revealed that there is standardization and typecasting of Beast and Beauty roles in K-Dramas, a reflection of South Korean’s patriarchal society where women and men are continuously expected to fulfil their pre-established gender binary roles and stereotypes.Keywords: K-dramas, beauty, low self-esteem, plastic surgery, South Korean stereotypes
Procedia PDF Downloads 214567 Idea, Creativity, Design, and Ultimately, Playing with Mathematics
Authors: Yasaman Azarmjoo
Abstract:
Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence
Procedia PDF Downloads 93566 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 336565 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 142564 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement
Authors: Vatsal Patel, Niraj Shah
Abstract:
The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion
Procedia PDF Downloads 345563 Biotechnological Recycling of Apple By-Products: A Reservoir Model to Produce a Dietary Supplement Fortified with Biogenic Phenolic Compounds
Authors: Ali Zein Aalabiden Tlais, Alessio Da Ros, Pasquale Filannino, Olimpia Vincentini, Marco Gobbetti, Raffaella Di Cagno
Abstract:
This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, antioxidant activity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the Liquid chromatography-mass spectrometry validated method. The accumulation of phenolic acid derivatives highlighted microbial metabolism during AP fermentation. Bio-converted phenolic compounds were likely responsible for the increased antioxidant activity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells and preserved the integrity of tight junctions. An alternative and suitable model for food by-products recycling to manufacture a dietary supplement fortified with biogenic compounds was proposed. Highlighting the microbial metabolism of several phenolic compounds, undoubted additional value to such downstream wastes was created.Keywords: apple by-products, antioxidant, fermentation, phenolic compounds
Procedia PDF Downloads 141562 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: dropwise condensation, textured surface, image processing, watershed
Procedia PDF Downloads 223561 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 224560 A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids
Authors: Prashant Malavadkar, Santosh Dhotre, Maruti Shikare
Abstract:
The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices.Keywords: binary matroids, splitting, element splitting, forbidden minor
Procedia PDF Downloads 276559 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.Keywords: image fusion, iris recognition, local binary pattern, wavelet
Procedia PDF Downloads 367558 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications
Authors: Morsy Ahmed Morsy Ismail
Abstract:
In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia
Procedia PDF Downloads 175557 Spectrophotometric Methods for Simultaneous Determination of Binary Mixture of Amlodipine Besylate and Atenolol Based on Dual Wavelength
Authors: Nesrine T. Lamie
Abstract:
Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a binary mixture containing amlodipine besylate (AM) and atenolol (AT) where AM is determined at its λmax 360 nm (0D), while atenolol can be determined by different methods. Method (A) is absorpotion factor (AFM). Method (B) is the new Ratio Difference method(RD) which measures the difference in amplitudes between 210 and 226 nm of ratio spectrum., Method (C) is novel constant center spectrophotometric method (CC) Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The calibration curve is linear over the concentration range of 10–80 and 4–40 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.Keywords: amlodipine, atenolol, absorption factor, constant center, mean centering, ratio difference
Procedia PDF Downloads 304556 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control
Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines
Abstract:
This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.Keywords: extraction, cloud point, non ionic surfactant, bezanyl green
Procedia PDF Downloads 126555 Thermodynamic Properties of Binary Mixtures of 1, 2-Dichloroethane with Some Polyethers: DISQUAC Calculations Compared with Dortmund UNIFAC Results
Authors: F. Amireche, I. Mokbel, J. Jose, B. F. Belaribi
Abstract:
The experimental vapour-liquid equilibria (VLE) at isothermal conditions and excess molar Gibbs energies GE are carried out for the three binary mixtures: 1, 2- dichloroethane + ethylene glycol dimethyl ether, + diethylene glycol dimethyl ether or + diethylene glycol diethyl ether, at ten temperatures ranging from 273 to 353.15 K. A good static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P, the excess molar Gibbs energies GE and the excess molar enthalpies HE.Keywords: Disquac model, Dortmund UNIFAC model, 1, 2- dichloroethane, excess molar Gibbs energies GE, polyethers, VLE
Procedia PDF Downloads 269554 Preparation and Study Corrosion and Electrical Resistivity of Al-Ni-Cr Alloy
Authors: Khalid H. Abass
Abstract:
Al-Ni-Cr alloy contains different ratios of Ni and Cr was prepared by mixing Al, Ni and Cr at 800oC under an argon atmosphere. The prepared alloys were heated for 1300 hr to 560oC, and then cooled rapidly by water at the ambient temperature. Surface morphology for alloys is studied by scanning electron microscope (SEM). The resultant homogeneous surface is a result of heat treatment. The X-ray diffraction patterns showed (111), (200), and (220) diffraction lines from cubic Al crystal structure, and suggested that the intensity of peak (111) orientation is predominant. Three binary phases were observed and grown in alloys: Al3Ni (Orthorhombic, a = 6.598Ǻ, b = 7.352 Ǻ, c = 4.802 Ǻ), Cr9Al17 (Rhombohedra, a = 12.910 Ǻ, c = 15.677), and Ni2Cr3 (Tetragonal, a = 8.82 Ǻ, c = 4.58 Ǻ). The average crystallite sizes of the prepared samples were found to be from 3000 to 3094 nm by SEM, which is much smaller than that estimated from XRD data. Corrosion resistance increases with increasing Ni-Cr content in Al alloys. The electrical volume resistivity decreased with increasing Ni-Cr content at low frequency. This behavior can be seen generally at 50Hz, where the electrical volume resistivity reached the value of 3.98×10-8Ω.cm for the ratio Al-1.8 at.%Ni-0.18at.%Cr.Keywords: Al-Ni-Cr alloy, corrosion current, electrical volume resistivity, binary phase, homogeneous surface
Procedia PDF Downloads 397553 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 160552 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 186551 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 85550 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 155549 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada
Abstract:
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.Keywords: distributed algorithm, MapReduce, multi-class, support vector machine
Procedia PDF Downloads 401548 Local Texture and Global Color Descriptors for Content Based Image Retrieval
Authors: Tajinder Kaur, Anu Bala
Abstract:
An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.Keywords: color, texture, feature extraction, local binary patterns, image retrieval
Procedia PDF Downloads 366547 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers
Authors: Linda Boussaid, Farid Brahim Belaribi
Abstract:
The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixturesKeywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers
Procedia PDF Downloads 91546 The Theory behind Logistic Regression
Authors: Jan Henrik Wosnitza
Abstract:
The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression
Procedia PDF Downloads 426545 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid
Authors: Min Wang, Sergey Utev
Abstract:
The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial
Procedia PDF Downloads 138544 Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel
Authors: Ali Dalirbod, Peyman Ahmadian
Abstract:
Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion.Keywords: nitride inclusion, simulation, tensile properties, inclusion-matrix interface
Procedia PDF Downloads 317543 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 372