Search results for: user path prediction (UPP) and user pattern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7898

Search results for: user path prediction (UPP) and user pattern

6788 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Chaudhuri Manoj Kumar Swain, Susmita Das

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis

Procedia PDF Downloads 178
6787 Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop

Authors: Zofija Tupikovskaja-Omovie, David Tyler, Sam Dhanapala, Steve Hayes

Abstract:

The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behavior in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile websites and apps. A mixed method approach helped to understand why fashion consumers prefer websites on mobile devices, when mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.

Keywords: consumer behavior, eye-tracking technology, fashion retail, mobile app, m-retail, smart phones, topshop, user experience, website

Procedia PDF Downloads 459
6786 Rounded-off Measurements and Their Implication on Control Charts

Authors: Ran Etgar

Abstract:

The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.

Keywords: inaccurate measurement, SPC, statistical process control, rounded-off, control chart

Procedia PDF Downloads 42
6785 The Effects of Perceived Service Quality on Customers' Satisfaction, Trust and Loyalty in Online Shopping: A Case of Saudi Consumers' Perspectives

Authors: Nawt Almutairi, Ramzi El-Haddadeh

Abstract:

With the extensive increase in the number of online shops, loyalty becomes the most purpose for e-retailers by which they can maintain their exit customers and regular income instead of spending large deal of money to target new segmentation. To obtain customers’ loyalty e-marketers should firstly satisfy customers by providing a high quality of services that could fulfil their demand. They have to satisfy them to trust the web-site then increase their intention to re-visit it. This study intends to investigate to what extend the elements of e-service quality presented in the literature affect customers’ satisfaction and how these influences contribute to customers’ trust and loyalty. Three dimensions of service quality are estimated. The first element is web-site interactivity, which is perceived the quality of interactive support and the accessible communications-tool. The second aspect is security/privacy, which is perceived the quality of controlling security and privacy while transaction over the web-site. The third element is web-design that perceived a pleasant user interface with visual appealing. These elements present positive effects on shoppers’ satisfaction. Thus, To examine the proposed constructs of this research, some measurements scale-items adapted from similar prior studies. Survey data collected online from Saudi customers (n=106) were utilized to test the research hypotheses. After that, the hypotheses were analyzed by using a variety of regression tools. The analytical results of this study propose that perceived quality of interactivity and security/privacy affects customers’ satisfaction. As well as trust seems to be a substantial construct that highly affects loyalty in online shopping. This study provides a developed model to obtain a simple understanding of the series of customers’ loyalty in online shopping. One construct presenting in the research model is web-design appears to be not important antecedent of satisfaction (the path to loyalty) in online shopping.

Keywords: e-service, satisfaction, trust, loyalty

Procedia PDF Downloads 259
6784 BER Estimate of WCDMA Systems with MATLAB Simulation Model

Authors: Suyeb Ahmed Khan, Mahmood Mian

Abstract:

Simulation plays an important role during all phases of the design and engineering of communications systems, from early stages of conceptual design through the various stages of implementation, testing, and fielding of the system. In the present paper, a simulation model has been constructed for the WCDMA system in order to evaluate the performance. This model describes multiusers effects and calculation of BER (Bit Error Rate) in 3G mobile systems using Simulink MATLAB 7.1. Gaussian Approximation defines the multi-user effect on system performance. BER has been analyzed with comparison between transmitting data and receiving data.

Keywords: WCDMA, simulations, BER, MATLAB

Procedia PDF Downloads 593
6783 A Multi Cordic Architecture on FPGA Platform

Authors: Ahmed Madian, Muaz Aljarhi

Abstract:

Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.

Keywords: multi, CORDIC, FPGA, processor

Procedia PDF Downloads 470
6782 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 305
6781 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
6780 Urban Logistics Dynamics: A User-Centric Approach to Traffic Modelling and Kinetic Parameter Analysis

Authors: Emilienne Lardy, Eric Ballot, Mariam Lafkihi

Abstract:

Efficient urban logistics requires a comprehensive understanding of traffic dynamics, particularly as it pertains to kinetic parameters influencing energy consumption and trip duration estimations. While real-time traffic information is increasingly accessible, current high-precision forecasting services embedded in route planning often function as opaque 'black boxes' for users. These services, typically relying on AI-processed counting data, fall short in accommodating open design parameters essential for management studies, notably within Supply Chain Management. This work revisits the modelling of traffic conditions in the context of city logistics, emphasizing its significance from the user’s point of view, with two focuses. Firstly, the focus is not on the vehicle flow but on the vehicles themselves and the impact of the traffic conditions on their driving behaviour. This means opening the range of studied indicators beyond vehicle speed, to describe extensively the kinetic and dynamic aspects of the driving behaviour. To achieve this, we leverage the Art. Kinema parameters are designed to characterize driving cycles. Secondly, this study examines how the driving context (i.e., exogenous factors to the traffic flow) determines the mentioned driving behaviour. Specifically, we explore how accurately the kinetic behaviour of a vehicle can be predicted based on a limited set of exogenous factors, such as time, day, road type, orientation, slope, and weather conditions. To answer this question, statistical analysis was conducted on real-world driving data, which includes high-frequency measurements of vehicle speed. A Factor Analysis and a Generalized Linear Model have been established to link kinetic parameters with independent categorical contextual variables. The results include an assessment of the adjustment quality and the robustness of the models, as well as an overview of the model’s outputs.

Keywords: factor analysis, generalised linear model, real world driving data, traffic congestion, urban logistics, vehicle kinematics

Procedia PDF Downloads 67
6779 Factors Influencing the Usage of ERP in Enterprise Systems

Authors: Mohammad Reza Babaei, Sanaz Kamrani

Abstract:

The main problems That arise In adopting most Enterprise resources planning (ERP) strategies come from organizational, complex information systems like the ERP integrate the data of all business areas within the organization. The implementation of ERP is a difficult process as it involves different types of end users. Based on literature, we proposed a conceptual framework and examined it to find the effect of some of the individual, organizational, and technological factors on the usage of ERP and its impact on the end user. The results of the analysis suggest that computer self-efficacy, organizational support, training, and compatibility have a positive influence on ERP usage which in turn has significant influence on panoptic empowerment and individual performance.

Keywords: factor, influencing, enterprise, system

Procedia PDF Downloads 369
6778 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt

Authors: H. A. Mansour

Abstract:

The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.

Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation

Procedia PDF Downloads 298
6777 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature

Authors: Jian Qu, Akira Shimazu

Abstract:

OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.

Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval

Procedia PDF Downloads 496
6776 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 76
6775 Reducing Accidents Using Text Stops

Authors: Benish Chaudhry

Abstract:

Most of the accidents these days are occurring because of the ‘text-and-drive’ concept. If we look at the structure of cities in UAE, there are great distances, because of which it is impossible to drive without using or merely checking the cellphone. Moreover, if we look at the road structure, it is almost impossible to stop at a point and text. With the introduction of TEXT STOPs, drivers will be able to stop different stops for a maximum of 1 and a half-minute in order to reply or write a message. They can be introduced at a distance of 10 minutes of driving on the average speed of the road, so the drivers can look forward to a stop and can reply to a text when needed. A user survey indicates that drivers are willing to NOT text-and-drive if they have such a facility available.

Keywords: transport, accidents, urban planning, road planning

Procedia PDF Downloads 395
6774 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 248
6773 Formal Development of Electronic Identity Card System Using Event-B

Authors: Tomokazu Nagata, Jawid Ahmad Baktash

Abstract:

The goal of this paper is to explore the use of formal methods for Electronic Identity Card System. Nowadays, one of the core research directions in a constantly growing distributed environment is the improvement of the communication process. The responsibility for proper verification becomes crucial. Formal methods can play an essential role in the development and testing of systems. The thesis presents two different methodologies for assessing correctness. Our first approach employs abstract interpretation techniques for creating a trace based model for Electronic Identity Card System. The model was used for building a semi decidable procedure for verifying the system model. We also developed the code for the eID System and can cover three parts login to system sending of Acknowledgment from user side, receiving of all information from server side and log out from system. The new concepts of impasse and spawned sessions that we introduced led our research to original statements about the intruder’s knowledge and eID system coding with respect to secrecy. Furthermore, we demonstrated that there is a bound on the number of sessions needed for the analysis of System.Electronic identity (eID) cards promise to supply a universal, nation-wide mechanism for user authentication. Most European countries have started to deploy eID for government and private sector applications. Are government-issued electronic ID cards the proper way to authenticate users of online services? We use the eID project as a showcase to discuss eID from an application perspective. The new eID card has interesting design features, it is contact-less, it aims to protect people’s privacy to the extent possible, and it supports cryptographically strong mutual authentication between users and services. Privacy features include support for pseudonymous authentication and per service controlled access to individual data items. The article discusses key concepts, the eID infrastructure, observed and expected problems, and open questions. The core technology seems ready for prime time and government projects deploy it to the masses. But application issues may hamper eID adoption for online applications.

Keywords: eID, event-B, Pro-B, formal method, message passing

Procedia PDF Downloads 237
6772 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 146
6771 Deformation Severity Prediction in Sewer Pipelines

Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed

Abstract:

Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.

Keywords: deformation, prediction, regression analysis, sewer pipelines

Procedia PDF Downloads 189
6770 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 360
6769 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: motion planning, SCARA robot, trajectory tracking, analytical form

Procedia PDF Downloads 318
6768 Continued usage of Wearable FItness Technology: An Extended UTAUT2 Model Perspective

Authors: Rasha Elsawy

Abstract:

Aside from the rapid growth of global information technology and the Internet, another key trend is the swift proliferation of wearable technologies. The future of wearable technologies is very bright as an emerging revolution in this technological world. Beyond this, individual continuance intention toward IT is an important area that drew academics' and practitioners' attention. The literature review exhibits that continuance usage is an important concern that needs to be addressed for any technology to be advantageous and for consumers to succeed. However, consumers noticeably abandon their wearable devices soon after purchase, losing all subsequent benefits that can only be achieved through continued usage. Purpose-This thesis aims to develop an integrated model designed to explain and predict consumers' behavioural intention(BI) and continued use (CU) of wearable fitness technology (WFT) to identify the determinants of the CU of technology. Because of this, the question arises as to whether there are differences between technology adoption and post-adoption (CU) factors. Design/methodology/approach- The study employs the unified theory of acceptance and use of technology2 (UTAUT2), which has the best explanatory power, as an underpinning framework—extending it with further factors, along with user-specific personal characteristics as moderators. All items will be adapted from previous literature and slightly modified according to the WFT/SW context. A longitudinal investigation will be carried out to examine the research model, wherein a survey will include these constructs involved in the conceptual model. A quantitative approach based on a questionnaire survey will collect data from existing wearable technology users. Data will be analysed using the structural equation modelling (SEM) method based on IBM SPSS statistics and AMOS 28.0. Findings- The research findings will provide unique perspectives on user behaviour, intention, and actual continuance usage when accepting WFT. Originality/value- Unlike previous works, the current thesis comprehensively explores factors that affect consumers' decisions to continue using wearable technology. That is influenced by technological/utilitarian, affective, emotional, psychological, and social factors, along with the role of proposed moderators. That novel research framework is proposed by extending the UTAUT2 model with additional contextual variables classified into Performance Expectancy, Effort Expectancy, Social Influence (societal pressure regarding body image), Facilitating Conditions, Hedonic Motivation (to be split up into two concepts: perceived enjoyment and perceived device annoyance), Price value, and Habit-forming techniques; adding technology upgradability as determinants of consumers' behavioural intention and continuance usage of Information Technology (IT). Further, using personality traits theory and proposing relevant user-specific personal characteristics (openness to technological innovativeness, conscientiousness in health, extraversion, neuroticism, and agreeableness) to moderate the research model. Thus, the present thesis obtains a more convincing explanation expected to provide theoretical foundations for future emerging IT (such as wearable fitness devices) research from a behavioural perspective.

Keywords: wearable technology, wearable fitness devices/smartwatches, continuance use, behavioural intention, upgradability, longitudinal study

Procedia PDF Downloads 115
6767 Robotic Solution for Nuclear Facility Safety and Monitoring System

Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin

Abstract:

An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.

Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security

Procedia PDF Downloads 209
6766 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 275
6765 Flexicommute: A Web-Based Application to Help with Car Rental Services in the Philippines

Authors: Mico Kenshee C. Samarista, John Harvey V. Miranda, Janne Audrae Q. Lebosada, Josef Anton R. Benitez, Juan Miguel C. Rubio

Abstract:

This research paper presents the development and evaluation of a web-based application designed to simplify the process of car rental services in the Philippines. As the demand for convenient and efficient access to rental car information grows, the need for a user-friendly platform becomes increasingly crucial. The web-based application serves as a comprehensive central hub, aggregating and organizing rental car listings from various reputable websites across the Philippines. By collecting essential data through surveys and usability testing, we assess the platform's effectiveness in simplifying the rental car selection process.

Keywords: web, application, car, services

Procedia PDF Downloads 89
6764 A Regulator's Assessment of Consumer Risk When Evaluating a User Test for an Umbrella Brand Name in an over the Counter Medicine

Authors: A. Bhatt, C. Bassi, H. Farragher, J. Musk

Abstract:

Background: All medicines placed on the EU market are legally required to be accompanied by labeling and package leaflet, which provide comprehensive information, enabling its safe and appropriate use. Mock-ups with results of assessments using a target patient group must be submitted for a marketing authorisation application. Consumers need confidence in non-prescription, OTC medicines in order to manage their minor ailments and umbrella brands assist purchasing decisions by assisting easy identification within a particular therapeutic area. A number of regulatory agencies have risk management tools and guidelines to assist in developing umbrella brands for OTC medicines, however assessment and decision making is subjective and inconsistent. This study presents an evaluation in the UK following the US FDA warning concerning methaemoglobinaemia following 21 reported cases (11 children under 2 years) caused by OTC oral analgesics containing benzocaine. METHODS: A standard face to face, 25 structured task based user interview testing methodology using a standard questionnaire and rating scale in consumers aged 15-91 years, was conducted independently between June and October 2015 in their homes. Whether individuals could discriminate between the labelling, safety information and warnings on cartons and PILs between 3 different OTC medicines packs with the same umbrella name was evaluated. Each pack was presented with differing information hierarchy using, different coloured cartons, containing the 3 different active ingredients, benzocaine (oromucosal spray) and two lozenges containing 2, 4, dichlorobenzyl alcohol, amylmetacresol and hexylresorcinol respectively (for the symptomatic relief of sore throat pain). The test was designed to determine whether warnings on the carton and leaflet were prominent, accessible to alert users that one product contained benzocaine, risk of methaemoglobinaemia, and refer to the leaflet for the signs of the condition and what to do should this occur. Results: Two consumers did not locate the warnings on the side of the pack, eventually found them on the back and two suggestions to further improve accessibility of the methaemoglobinaemia warning. Using a gold pack design for the oromucosal spray, all consumers could differentiate between the 3 drugs, minimum age particulars, pharmaceutical form and the risk factor methaemoglobinaemia. The warnings for benzocaine were deemed to be clear or very clear; appearance of the 3 packs were either very well differentiated or quite well differentiated. The PIL test passed on all criteria. All consumers could use the product correctly, identify risk factors ensuring the critical information necessary for the safe use was legible and easily accessible so that confusion and errors were minimised. Conclusion: Patients with known methaemoglobinaemia are likely to be vigilant in checking for benzocaine containing products, despite similar umbrella brand names across a range of active ingredients. Despite these findings, the package design and spray format were not deemed to be sufficient to mitigate potential safety risks associated with differences in target populations and contraindications when submitted to the Regulatory Agency. Although risk management tools are increasingly being used by agencies to assist in providing objective assurance of package safety, further transparency, reduction in subjectivity and proportionate risk should be demonstrated.

Keywords: labelling, OTC, risk, user testing

Procedia PDF Downloads 309
6763 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 156
6762 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots

Procedia PDF Downloads 159
6761 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 141
6760 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 327
6759 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis

Authors: Quan Gu, Daniel Dimitrov

Abstract:

BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.

Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics

Procedia PDF Downloads 205