Search results for: type-2 fuzzy sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1900

Search results for: type-2 fuzzy sets

790 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 103
789 Preferred Teaching Styles of University Level Young Assistant Professors in the Faculty of Agriculture

Authors: Jaisridhar P.

Abstract:

The present study aimed to investigate preferred teaching styles of young faculties in agricultural education among 23 constituent colleges of Tamil Nadu Agricultural University (TNAU) using Staffordshire Evaluation of Teaching Styles (SETS). An onlinesurvey was conducted among 156 young faculties of 2014 Batch working in different constituent colleges of TNAU and 73 faculties respondent to the survey. The results showed that 62.53 percent preferred “The one-off teacher” stylefollowed by62.26 percent preferring “The student centered, sensitive teacher” style.“The all-round flexible and adaptable teaching style” was preferred by 61.64 percent. The Official Curriculum Teacher” with 61.23 per cent preferring this style.58.97 per cent preferred “The Big Conference Teacher” followed by 58.08 percent of the faculties preferring “The Straight Fact no Non-sense Teacher” type of teaching style. From the results, it wasconcluded that blended teaching approach can balance a teacher’s personal strengths and interest with student’s needs, and curricular requirements enables a teacher to tailor their teaching according to the student’s needs and as per subject matter.

Keywords: teaching styles, assistant professors, agriculture, tamil nadu

Procedia PDF Downloads 121
788 Effects of Peakedness of Bimodal Waves on Overtopping of Sloping Seawalls

Authors: Stephen Orimoloye, Jose Horrillo-Caraballo, Harshinie Karunarathna, Dominic E. Reeve

Abstract:

Prediction of wave overtopping is an essential component of coastal seawall designing and management. Not only that excessive overtopping is reported for impermeable seawalls under bimodal waves, but overtopping is also showing a high sensitivity to the peakedness of the random wave propagation patterns. In the present study, we present a comprehensive analysis of the effects of peakedness of bimodal wave patterns of the overtopping of sloping seawalls. An energy-conserved bimodal spectrum with four different spectra peak periods and swell percentages was applied to estimate wave overtopping in both numerical and experimental flumes. Results of incident surface elevations and bimodal spectra were accurately captured across the flume domain using sets of well-positioned resistant-type wave gauges. Peakedness characteristics of the wave patterns were extracted to derive a relationship between the non-dimensional overtopping and the peakedness across the wave groups in the wave series. The full paper will briefly describe the development of the spectrum and present a comprehensive results analysis leading to the derivation of the relationship between dimensionless overtopping and peakedness of bimodal waves.

Keywords: wave overtopping, peakedness, bimodal waves, swell percentages

Procedia PDF Downloads 182
787 Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering

Authors: Manoj Kumar

Abstract:

Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications.

Keywords: electron impact ionization cross-sections, oscillator strength, jain-khare semiempirical approach

Procedia PDF Downloads 112
786 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 98
785 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 145
784 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 461
783 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 482
782 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 669
781 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 123
780 Performants: A Digital Event Manager-Organizer

Authors: Ioannis Andrianakis, Manolis Falelakis, Maria Pavlidou, Konstantinos Papakonstantinou, Ermioni Avramidou, Dimitrios Kalogiannis, Nikolaos Milios, Katerina Bountakidou, Kiriakos Chatzidimitriou, Panagiotis Panagiotopoulos

Abstract:

Artistic events, such as concerts and performances, are challenging to organize because they involve many people with different skill sets. Small and medium venues often struggle to afford the costs and overheads of booking and hosting remote artists, especially if they lack sponsors or subsidies. This limits the opportunities for both venues and artists, especially those outside of big cities. However, more and more research shows that audiences prefer smaller-scale events and concerts, which benefit local economies and communities. To address this challenge, our project “PerformAnts: Digital Event Manager-Organizer” aims to develop a smart digital tool that automates and optimizes the processes and costs of live shows and tours. By using machine learning, applying best practices and training users through workshops, our platform offers a comprehensive solution for a growing market, enhances the mobility of artists and the accessibility of venues and allows professionals to focus on the creative aspects of concert production.

Keywords: event organization, creative industries, event promotion, machine learning

Procedia PDF Downloads 87
779 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 42
778 Independence and Path Independence on Cayley Digraphs of Left Groups and Right Groups

Authors: Nuttawoot Nupo, Sayan Panma

Abstract:

A semigroup S is said to be a left (right) zero semigroup if S satisfies the equation xy=x (xy=y) for all x,y in S. In addition, the semigroup S is called a left (right) group if S is isomorphic to the direct product of a group and a left (right) zero semigroup. The Cayley digraph Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with the vertex set S and the arc set E(Cay(S,A))={(x,xa) | x∈S, a∈A} where A is any subset of S. All sets in this research are assumed to be finite. Let D be a digraph together with a vertex set V and an arc set E. Let u and v be two different vertices in V and I a nonempty subset of V. The vertices u and v are said to be independent if (u,v)∉E and (v,u)∉E. The set I is called an independent set of D if any two different vertices in I are independent. The independence number of D is the maximum cardinality of an independent set of D. Moreover, the vertices u and v are said to be path independent if there is no dipath from u to v and there is no dipath from v to u. The set I is called a path independent set of D if any two different vertices in I are path independent. The path independence number of D is the maximum cardinality of a path independent set of D. In this research, we describe a lower bound and an upper bound of the independence number of Cayley digraphs of left groups and right groups. Some examples corresponding to those bounds are illustrated here. Furthermore, the exact value of the path independence number of Cayley digraphs of left groups and right groups are also presented.

Keywords: Cayley digraphs, independence number, left groups, path independence number, right groups

Procedia PDF Downloads 234
777 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway

Procedia PDF Downloads 203
776 Entrepreneurship Cure for Economic Under-Development in Nigeria: A Theoretical Perspective

Authors: Kurotimi Maurice Fems, Abara Onu, Francis W. D. Poazi

Abstract:

Scholars and development economists believe that the development of an economy depends largely on the creative and innovative ingenuity of its entrepreneurs. Others however, are of the opinion that the lack of entrepreneurs or entrepreneurial activities is not a constraint to economic development in any economy, particularly Nigeria. This paper sets out to explore the connectivity between entrepreneurship and economic development from a theoretical point of view, principally in Nigeria. A desk research approach was adopted where a conglomerate of literatures was reviewed on how entrepreneurship can spur economic growth or otherwise. The findings reveal that entrepreneurship is vital to the development of Nigeria and that, universities and other Higher Education Institutions must play the vital role of educating the people on entrepreneurship skills and competences. However, the problems and difficulties entrepreneurs face in Nigeria and the same problems suffocating the growth and development of its economy. Therefore, entrepreneurship cannot be said to be the sole cure for economic under-development in Nigeria but rather other factors such as empowering and granting the institutions autonomy and the provision of infrastructural capability, such as consistent electricity generation and supply, good system of transportation, implementing proposed economic policies in an effective and efficient manner etc., the cultural beliefs and mindset of the citizenry, was also found to be key in the development of any economy.

Keywords: economic underdevelopment, entrepreneurial, entrepreneurship, infrastructural under-development, oil boom, SMEs, unemployable

Procedia PDF Downloads 273
775 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities

Authors: Chusak Thanawattano, Roongroj Bhidayasiri

Abstract:

This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.

Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation

Procedia PDF Downloads 443
774 Impact of Small and Medium Enterprises on Economic Development in the Gulf Cooperation Council: Quantitative Approaches

Authors: Hanadi Al-Mubaraki, Michael Busler

Abstract:

Both in the developed and developing countries as well as Gulf Cooperation Council (GCC), the small and medium-sized enterprises (SMEs) proven to be main drivers of jobs creation and tools to accelerate economic development and economic diversification. This paper seeks to investigate and identify the strengths and weakness of SME as a veritable tool in economic development. A survey method was used to gather data from 171 SME from Gulf Cooperation Council (GCC). The research methodology uses a quantitative approach (survey) while data were collected with a structured questionnaire and analyzed with several descriptive statistics. The results of the study, therefore, will present sets of the strengths of SME in GCC such as 1) government supported local products (59%), 2) promoting SME local products rather than international products (47%), 3) reduce the legal and administrative procedures of SME establishment (46%) and weakness of SME in GCC such as: 1) lack of funding during the initial phase of the project (46%), 2) lack of liquidity during project continuity (39%), and 3) strong competition in the domestic and global market (38%). The study findings will be guidelines for academia and practitioners such as governments, policymakers, funded organizations, universities and strategic institutions for successful implementation.

Keywords: SME, economic development, GCC, strengths and weaknesses

Procedia PDF Downloads 145
773 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 514
772 An Image Stitching Approach for Scoliosis Analysis

Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris

Abstract:

Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.

Keywords: image stitching, MACE filter, panorama image, scoliosis

Procedia PDF Downloads 461
771 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 166
770 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model

Authors: Fatemah A. Alqallaf, Debasis Kundu

Abstract:

The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.

Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators

Procedia PDF Downloads 143
769 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection

Authors: T. T. Tham

Abstract:

The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.

Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management

Procedia PDF Downloads 123
768 Evaluation of Environmental Impact Assessment of Dam Using GIS/Remote Sensing-Review

Authors: Ntungamili Kenosi, Moatlhodi W. Letshwenyo

Abstract:

Negative environmental impacts due to construction of large projects such as dams have become an important aspect of land degradation. This paper will review the previous literature on the previous researches or study in the same area of study in the other parts of the world. After dam has been constructed, the actual environmental impacts are investigated and compared to the predicted results of the carried out Environmental Impact Assessment. GIS and Remote Sensing, play an important role in generating automated spatial data sets and in establishing spatial relationships. Results from other sources shows that the normalized vegetation index (NDVI) analysis was used to detect the spatial and temporal change of vegetation biomass in the study area. The result indicated that the natural vegetation biomass is declining. This is mainly due to the expansion of agricultural land and escalating human made structures in the area. Urgent environmental conservation is necessary when adjoining projects site. Less study on the evaluation of EIA on dam has been conducted in Botswana hence there is a need for the same study to be conducted and then it will be easy to be compared to other studies around the world.

Keywords: Botswana, dam, environmental impact assessment, GIS, normalized vegetation index (NDVI), remote sensing

Procedia PDF Downloads 406
767 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 458
766 Improving Forecasting Demand for Maintenance Spare Parts: Case Study

Authors: Abdulaziz Afandi

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: neural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 128
765 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 364
764 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 35
763 The Principles of Democracy and Development: The Political and Philosophical Foundations of Development-Democracy in Africa

Authors: Fadeke Olu-Owolabi, Fayomi Oluyemi

Abstract:

The political and societal orders face the awesome task of overcoming the difficulties which lead to growing tensions and conflicts in Africa. At the core of analysis is the question, how stable and adaptable are established democracies, new democracies, and political and societal actors? The idea of development-democracy as implying the strong linkage between economic development and political democracy appropriately describes the distinguishing characteristic of this new demand for democracy in Africa. The theoretical study examines the political and philosophical foundation of the idea of development-democracy and the arguments presented to support the need for its adoption in Africa today. This paper critically examines the polemic between the advocates of developmental dictatorship and developmental-democracy and argues for the adoption of the latter in Africa. The paper sets out to expose for the political and philosophical foundation of developmental democracy maintaining that only democracy can facilitate development. This argument is supported further by the claim that both democracy and development are two sides of the same coin in the sense that the two are both ethical concepts. The paper also maintained that the only way by which democracy is worthwhile is when it is developmental. Finally, the paper affirms that since the two concepts of democracy and development are like the Siamese twins then the way out of Africa’s present crisis of development is to wholeheartedly embrace democracy. It posits that when genuine democracy is adopted, genuine and sustainable development can then be attained.

Keywords: democracy, development, polemic, principles

Procedia PDF Downloads 529
762 The Principles of Democracy and Development: The Political and Philosophical Foundations of Development-Development in Africa

Authors: Fadeke E. Olu-Owolabi, Fayomi Oluyemi

Abstract:

The political and societal orders face the awesome task of overcoming the difficulties which lead to growing tensions and conflicts in Africa. At the core of analysis is the question, how stable and adaptable are established democracies, new democracies, and political and societal actors? The idea of development-democracy as implying the strong linkage between economic development and political democracy appropriately describes the distinguishing characteristic of this new demand for democracy in Africa. The theoretical study examines the political and philosophical foundation of the idea of development-democracy and the arguments presented to support the need for its adoption in Africa today. This paper critically examines the polemic between the advocates of developmental dictatorship and developmental-democracy and argues for the adoption of the latter in Africa. The paper sets out to expose for the political and philosophical foundation of developmental democracy maintaining that only democracy can facilitate development. This argument is supported further by the claim that both democracy and development are two sides of the same coin in the sense that the two are both ethical concepts. The paper also maintained that the only way by which democracy is worthwhile is when it is developmental. Finally the paper affirms that since the two concepts of democracy and development are like the Siamese twins then the way out of Africa’s present crisis of development is to wholeheartedly embrace democracy. It posits that when genuine democracy is adopted, genuine and sustainable development can then be attained.

Keywords: democracy, development, polemic, principles

Procedia PDF Downloads 436
761 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 351