Search results for: transverse shear
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1543

Search results for: transverse shear

433 Analysis of Moment Rotation Curve for Steel Beam Column Joint

Authors: A. J. Shah, G. R. Vesmawala

Abstract:

Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.

Keywords: bolt, moment, rotation, stiffness, connections

Procedia PDF Downloads 380
432 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer

Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang

Abstract:

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.

Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer

Procedia PDF Downloads 91
431 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors

Authors: Hadjoui Abdelhamid, Saimi Ahmed

Abstract:

The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.

Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM

Procedia PDF Downloads 220
430 Forecasting of the Mobility of Rainfall-Induced Slow-Moving Landslides Using a Two-Block Model

Authors: Antonello Troncone, Luigi Pugliese, Andrea Parise, Enrico Conte

Abstract:

The present study deals with the landslides periodically reactivated by groundwater level fluctuations owing to rainfall. The main type of movement which generally characterizes these landslides consists in sliding with quite small-displacement rates. Another peculiar characteristic of these landslides is that soil deformations are essentially concentrated within a thin shear band located below the body of the landslide, which, consequently, undergoes an approximately rigid sliding. In this context, a simple method is proposed in the present study to forecast the movements of this type of landslides owing to rainfall. To this purpose, the landslide body is schematized by means of a two-block model. Some analytical solutions are derived to relate rainfall measurements with groundwater level oscillations and these latter, in turn, to landslide mobility. The proposed method is attractive for engineering applications since it requires few parameters as input data, many of which can be obtained from conventional geotechnical tests. To demonstrate the predictive capability of the proposed method, the application to a well-documented landslide periodically reactivated by rainfall is shown.

Keywords: rainfall, water level fluctuations, landslide mobility, two-block model

Procedia PDF Downloads 110
429 Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading

Authors: Prasanna Kumar Khaund, Sukanya Talukdar

Abstract:

A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions.

Keywords: design base width, horizontal earthquake coefficient, tail water, vertical earthquake coefficient

Procedia PDF Downloads 269
428 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji-Wook Mauk, Yu-Suk Kim, Hyung-Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects.

Keywords: fully infilled RC frame, partially infilled RC frame, masonry wall, short-column effect

Procedia PDF Downloads 401
427 Effectiveness of Column Geometry in High-Rise Buildings

Authors: Man Singh Meena

Abstract:

Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column.

Keywords: high-rise building, column geometry, building modelling, ETABS analysis, building design, structural analysis, structural optimization

Procedia PDF Downloads 56
426 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS

Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar

Abstract:

Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.

Keywords: ETABS, golden ratio, seismic design, structural behavior

Procedia PDF Downloads 155
425 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

Authors: Woei-Shyan Lee, Hao-Chien Kao

Abstract:

The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.

Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing

Procedia PDF Downloads 348
424 Functional Properties of Sunflower Protein Concentrates Extracted Using Different Anti-greening Agents - Low-Fat Whipping Cream Preparation

Authors: Tamer M. El-Messery

Abstract:

By-products from sunflower oil extraction, such as sunflower cakes, are rich sources of proteins with desirable functional properties for the food industry. However, challenges such as sensory drawbacks and the presence of phenolic compounds have hindered their widespread use. In this study, sunflower protein concentrates were obtained from sunflower cakes using different ant-greening solvents (ascorbic acid (ASC) and N-acetylcysteine (NAC)), and their functional properties were evaluated. The color of extracted proteins ranged from dark green to yellow, where the using of ASC and NAC agents enhanced the color. The protein concentrates exhibited high solubility (>70%) and antioxidant activity, with hydrophobicity influencing emulsifying activity. Emulsions prepared with these proteins showed stability and microencapsulation efficiency. Incorporation of protein concentrates into low-fat whipping cream formulations increased overrun and affected color characteristics. Rheological studies demonstrated pseudoplastic behavior in whipped cream, influenced by shear rates and protein content. Overall, sunflower protein isolates showed promising functional properties, indicating their potential as valuable ingredients in food formulations.

Keywords: functional properties, sunflower protein concentrates, antioxidant capacity, ant-greening agents, low-fat whipping cream

Procedia PDF Downloads 22
423 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 206
422 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 442
421 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress

Procedia PDF Downloads 343
420 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics

Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily

Abstract:

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.

Keywords: arterial blockage, pulse wave, atherosclerosis, CFD

Procedia PDF Downloads 268
419 Chemical Modification of Jute Fibers with Oxidative Agents for Usability as Reinforcement in Polymeric Composites

Authors: Yasemin Seki, Aysun Akşit

Abstract:

The goal of this research is to modify the surface characterization of jute yarns with different chemical agents to improve the compatibility with a non-polar polymer, polypropylene, when used as reinforcement. A literature review provided no knowledge on surface treatment of jute fibers with sodium perborate trihydrate. This study also aims to compare the efficiency of sodium perborate trihydrate on jute fiber treatment with other commonly used chemical agents. Accordingly, jute yarns were treated with 0.02% potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP) aqueous solutions in order to enhance interfacial compatibility with polypropylene in this study. The effect of treatments on surface topography, surface chemistry and interfacial shear strength of jute yarns with polypropylene were investigated. XPS results revealed that surface treatments enhanced surface hydrophobicity by increasing C/O ratios of fiber surface. Surface roughness values increased with the treatments. The highest interfacial adhesion with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber.

Keywords: jute, chemical modification, sodium perborate, polypropylene

Procedia PDF Downloads 492
418 Determination of Resistance to Freezing of Bonded Façade Joint

Authors: B. Nečasová, P. Liška, J. Šlanhof

Abstract:

Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.

Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure

Procedia PDF Downloads 376
417 Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage

Authors: Sabrina Boutaleb, Kouider Halim Benrahou, François Schosseler, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results.

Keywords: COAPUR 6050, flow’s couette, polyurethane, rheological behaviours

Procedia PDF Downloads 479
416 Chromite Exploration Using Electrical Resistivity Tomography in Ingessana Hill, Blue Nile State, Sudan

Authors: Mohamed A. Mohamed-Ali, Jannis Simos, Khalid M. Kheiralla

Abstract:

The Ingessana hills in the southern Blue Nile of Sudan are part of the southern sector of the NE-SW trending ophiolithic belt of the Arab-Nubian Shield with mid-neoproterozoic age. The rocks are mainly serpentinized and in parts highly silicified dunites especially towards the contact with the intruding Bau granite. A promising chromite mineralization zones in the area tend to be generally associated with NE-SW trending shear-zones. A detailed geophysical survey employing electrical resistivity tomography (ERT) at 34 lines were carried out over a zone of a known chromite mineralization to test feasibility of detecting and delineating the ore (if exist) and accordingly facilitate the positioning of exploratory drill holes. ERT sections were inverted with smooth constraints inversion code where the contacts between the granite and the ultramafics are showing up clearly. The continuity of mineralization along the contact is not well confirmed. However, the low-resistivity anomalies are probably recognized as potential chromite mineralization zones. These anomalies represent prime targets for further exploration by drilling, trenching or shallow pits. If the results of the drilling or excavations are positive, small open pit exploitations may produce important tonnages of chromite.

Keywords: chromite exploration, ERT, Ingessana Hills, inversion

Procedia PDF Downloads 368
415 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 79
414 Free Fibular Flaps in Management of Sternal Dehiscence

Authors: H. N. Alyaseen, S. E. Alalawi, T. Cordoba, É. Delisle, C. Cordoba, A. Odobescu

Abstract:

Sternal dehiscence is defined as the persistent separation of sternal bones that are often complicated with mediastinitis. Etiologies that lead to sternal dehiscence vary, with cardiovascular and thoracic surgeries being the most common. Early diagnosis in susceptible patients is crucial to the management of such cases, as they are associated with high mortality rates. A recent meta-analysis of more than four hundred thousand patients concluded that deep sternal wound infections were the leading cause of mortality and morbidity in patients undergoing cardiac procedures. Long-term complications associated with sternal dehiscence include increased hospitalizations, cardiac infarctions, and renal and respiratory failures. Numerous osteosynthesis methods have been described in the literature. Surgical materials offer enough rigidity to support the sternum and can be flexible enough to allow physiological breathing movements of the chest; however, these materials fall short when managing patients with extensive bone loss, osteopenia, or general poor bone quality, for such cases, flaps offer a better closure system. Early utilization of flaps yields better survival rates compared to delayed closure or to patients treated with sternal rewiring and closed drainage. The utilization of pectoralis major flaps, rectus abdominus, and latissimus muscle flaps have all been described in the literature as great alternatives. Flap selection depends on a variety of factors, mainly the size of the sternal defect, infection, and the availability of local tissues. Free fibular flaps are commonly harvested flaps utilized in reconstruction around the body. In cases regarding sternal reconstruction with free fibular flaps, the literature exclusively discussed the flap applied vertically to the chest wall. We present a different technique applying the free fibular triple barrel flap oriented in a transverse manner, in parallel to the ribs. In our experience, this method could have enhanced results and improved prognosis as it contributes to the normal circumferential shape of the chest wall.

Keywords: sternal dehiscence, management, free fibular flaps, novel surgical techniques

Procedia PDF Downloads 79
413 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors

Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu

Abstract:

The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.

Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion

Procedia PDF Downloads 195
412 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Keywords: axial force ratio, fire, reinforced concrete wall, residual strength

Procedia PDF Downloads 443
411 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area

Authors: Van-Dycke Sarpong Asare, Vincent Adongo

Abstract:

Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.

Keywords: tomography, characterization, consolidated, Pwalugu and seismograph

Procedia PDF Downloads 112
410 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 106
409 Site Specific Ground Response Estimations for the Vulnerability Assessment of the Buildings of the Third Biggest Mosque in the World, Algeria’s Mosque

Authors: S. Mohamadi, T. Boudina, A. Rouabeh, A. Seridi

Abstract:

Equivalent linear and non-linear ground response analyses are conducted at many representative sites at the mosque of Algeria, to compare the free field acceleration spectra with local code of practice. Spectral Analysis of Surface Waves (SASW) technique was adopted to measure the in-situ shear wave velocity profile at the representative sites. The seismic movement imposed on the rock is the NS component of Keddara station recorded during the earthquake in Boumerdes 21 May 2003. The site-specific elastic design spectra for each site are determined to further obtain site specific non-linear acceleration spectra. As a case study, the results of site-specific evaluations are presented for two building sites (site of minaret and site of the prayer hall) to demonstrate the influence of local geological conditions on ground response at Algerian sites. A comparison of computed response with the standard code of practice being used currently in Algeria for the seismic zone of Algiers indicated that the design spectra is not able to capture site amplification due to local geological conditions.

Keywords: equivalent linear, non-linear, ground response analysis, design response spectrum

Procedia PDF Downloads 431
408 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 106
407 Inertia Friction Pull Plug Welding, a New Weld Repair Technique of Aluminium Friction Stir Welding

Authors: Guoqing Wang, Yanhua Zhao, Lina Zhang, Jingbin Bai, Ruican Zhu

Abstract:

Friction stir welding with bobbin tool is a simple technique compared to conventional FSW since the backing fixture is no longer needed and assembling labor is reduced. It gets adopted more and more in the aerospace industry as a result. However, a post-weld problem, the left keyhole, has to be fixed by forced repair welding. To close the keyhole, the conventional fusion repair could be an option if the joint properties are not deteriorated; friction push plug welding, a forced repair, could be another except that a rigid support unit is demanded at the back of the weldment. Therefore, neither of the above ways is satisfaction in welding a large enclosed structure, like rocket propellant tank. Although friction pulls plug welding does not need a backing plate, the wide applications are still held back because of the disadvantages in respects of unappropriated tensile stress, (i.e. excessive stress causing neck shrinkage of plug that will bring about back defects while insufficient stress causing lack of heat input that will bring about face defects), complicated welding parameters (including rotation speed, transverse speed, friction force, welding pressure and upset),short welding time (approx. 0.5 sec.), narrow windows and poor stability of process. In this research, an updated technique called inertia friction pull plug welding, and its equipment was developed. The influencing rules of technological parameters on joint properties of inertia friction pull plug welding were observed. The microstructure characteristics were analyzed. Based on the elementary performance data acquired, the conclusion is made that the uniform energy provided by an inertia flywheel will be a guarantee to a stable welding process. Meanwhile, due to the abandon of backing plate, the inertia friction pull plug welding is considered as a promising technique in repairing keyhole of bobbin tool FSW and point type defects of aluminium base material.

Keywords: defect repairing, equipment, inertia friction pull plug welding, technological parameters

Procedia PDF Downloads 294
406 Trends in Endoscopic Versus Open Treatment of Carpal Tunnel Syndrome in Rheumatoid Arthritis Patients

Authors: Arman Kishan, Sanjay Kubsad, Steve Li, Mark Haft, Duc Nguyen, Dawn Laporte

Abstract:

Objective: Carpal tunnel syndrome can be managed surgically with endoscopic or open carpal tunnel release (CTR). Rheumatoid arthritis (RA) is a known risk factor for Carpal Tunnel Syndrome (CTS) and is believed to be related to compression of the median nerve secondary to inflammation. We aimed to analyze national trends, outcomes, and patient-specific comorbidities associated with ECTR and OCTR in patients with RA. Methods: A retrospective cohort study was conducted using the PearlDiver database, identifying 683 RA patients undergoing ECTR and 4234 undergoing OCTR between 2010 and 2014. Demographic data, comorbidities, and complication rates were analyzed. Univariate and multivariable analyses assessed differences between the treatment methods. Results:  Patients with RA undergoing ECTR in comparison to OCTR had no significant differences in medical comorbidities such as hypertension, obesity, chronic kidney disease, hypothyroidism and diabetes mellitus. Patients in the ECTR group reported a risk ratio of 1.44 (95%CI: 1.10-1.89, p=0.01) of requiring repeat procedures within 90 days of the initial procedure. Five-year trends in ECTR and OCTR procedures reported a combined annual growth rate of 5.6% and 13.15, respectively. Conclusion: Endoscopic and open approaches to CTR are important considerations in surgical planning. RA and ECTR have previously been identified as independent risk factors for revision CTR. Our study has identified the 90-day risk of repeat procedures to be elevated in the ECTR group in comparison to the OCTR group. Additionally, the growth of OCTR procedures has outpaced the growth of ECTR procedures in the same period, likely in response to the trend of ECTR leading to higher rates of repeat procedures. The need for revision following ECTR in patients with RA could be related to chronic inflammation leading to transverse carpal ligament thickening and concomitant tenosynovitis. Future directions could include further characterization of repeat procedures performed in this subset of patients. 

Keywords: endoscopic treatment of carpal tunnel syndrome, open treatment of carpal tunnel syndrome, rheumatoid arthritis, trends analysis, carpal tunnel syndrome

Procedia PDF Downloads 44
405 A Study on The Relationship between Building Façade and Solar Energy Utilization Potential in Urban Residential Area in West China

Authors: T. Wen, Y. Liu, J. Wang, W. Zheng, T. Shao

Abstract:

Along with the increasing density of urban population, solar energy potential of building facade in high-density residential areas become a question that needs to be addressed. This paper studies how the solar energy utilization potential of building facades in different locations of a residential areas changes with different building layouts and orientations in Xining, a typical city in west China which possesses large solar radiation resource. Solar energy potential of three typical building layouts of residential areas, which are parallel determinant, gable misalignment, transverse misalignment, are discussed in detail. First of all, through the data collection and statistics of Xining new residential area, the most representative building parameters are extracted, including building layout, building height, building layers, and building shape. Secondly, according to the results of building parameters extraction, a general model is established and analyzed with rhinoceros 6.0 and its own plug-in grasshopper. Finally, results of the various simulations and data analyses are presented in a visualized way. The results show that there are great differences in the solar energy potential of building facades in different locations of residential areas under three typical building layouts. Generally speaking, the solar energy potential of the west peripheral location is the largest, followed by the East peripheral location, and the middle location is the smallest. When the deflection angle is the same, the solar energy potential shows the result that the West deflection is greater than the East deflection. In addition, the optimal building azimuth range under these three typical building layouts is obtained. Within this range, the solar energy potential of the residential area can always maintain a high level. Beyond this range, the solar energy potential drops sharply. Finally, it is found that when the solar energy potential is maximum, the deflection angle is not positive south, but 5 °or 15°south by west. The results of this study can provide decision analysis basis for residential design of Xining city to improve solar energy utilization potential and provide a reference for solar energy utilization design of urban residential buildings in other similar areas.

Keywords: building facade, solar energy potential, solar radiation, urban residential area, visualization, Xining city

Procedia PDF Downloads 163
404 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 322