Search results for: problem-based learning approach
18055 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 12618054 The Interactions among Motivation, Persistence, and Learning Abilities as They Relate to Academic Outcomes in Children
Authors: Rachelle M. Johnson, Jenna E. Finch
Abstract:
Motivation, persistence, and learning disability status are all associated with academic performance, but to the author's knowledge, little research has been done on how these variables interact with one another and how that interaction looks different within children with and without learning disabilities. The present study's goal was to examine the role motivation and persistence play in the academic success of children with learning disabilities and how these variables interact. Measurements were made using surveys and direct cognitive assessments on each child. Analyses were run on student's scores in motivation, persistence, and ability to learn compared to other fifth grade students. In this study, learning ability was intended as a proxy for learning disabilities (LDs). This study included a nationally representative sample of over 8,000 fifth-grade children from across the United States. Multiple interactions were found among these variables of motivation, persistence, and motivation as they relate to academic achievement. The major finding of the study was the significant role motivation played in academic achievement. This study shows the importance of measuring the within-group. One key finding was that motivation was associated with academic success and was moderated by the other variables. The interaction results were different for math and reading outcomes, suggesting that reading and math success are different and should be addressed differently. This study shows the importance of measuring the within-group differences in levels of motivation to better understand the academic success of children with and without learning disabilities. This study's findings call for further investigation into motivation and the possible need for motivational intervention for students, especially those with learning disabilitiesKeywords: academic achievement, learning disabilities, motivation, persistence
Procedia PDF Downloads 12118053 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 15018052 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms
Authors: Sanjiti Sharma, Carol Seger
Abstract:
Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias
Procedia PDF Downloads 2918051 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 18918050 Learning Disability or Learning Differences: Understanding Differences Between Cultural and Linguistic Diversity, Learning Differences, and Learning Disabilities
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive make up that characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. CLD students are influenced by many factors (like acculturation and experience) that may impact their achievements and functioning levels. CLD students who develop initial or basic interpersonal communication proficiency skills in the target language are even at a higher risk for being suspected of learning disability when they are underachieving academically. Research indicates that large numbers of students arenot provided the type of education and types of supports they need in order to be successful in an academicenvironment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with CLD students. It is extremely important for the school staff, especially school psychologists, who often are the first experts that are consulted, to be educated about overlapping symptoms and settle differences between learning difference and disability. It is equally important for medical personnel, mainly pediatricians, psychologists, and psychiatrists, to understand the subtle differences to avoid inaccurate opinions. Having the knowledge, school staff can avoid unnecessary referrals for special education evaluations and avoid inaccurate decisions about the presence of a disability. This presentation will illustrate distinctions based on research between learning differences and disabilities, how to recognize them, and how to assess for them.Keywords: special education, learning disability, differentiation, differences
Procedia PDF Downloads 15618049 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 52118048 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 15418047 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning
Authors: Jose Ramon Calvo-Ferrer
Abstract:
Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.Keywords: digital game-based learning, feedback, metacognition, frequency, video games
Procedia PDF Downloads 15718046 The Wider Benefits of Negotiations: Austrian Perspective on Educational Leadership as a ‘Power Game’ for Trade Unions
Authors: Rudolf Egger
Abstract:
This paper explores the relationships between the basic learning processes of leading trade union workers and their methods for coping with the changes in the life-courses of societies today. It will discuss the fragile discourse on lifelong learning in trade unions and the “production of self-techniques” to get in touch with the new economic forms. On the basis of an empirical project, different processes of the socialization of leading trade union workers will be analysed to discover the consequences of the lifelong learning discourse. The results show what competences they need to develop for the “wider benefits of negotiations”. The main challenge remains to make visible how deeply intertwined trade union learning and education are with development in an ongoing dynamic economic process, rather than a quick-fix injection of skills and information. There is a complex relationship existing between the three ‘partners’, work, learning and society forming. The author suggests that contemporary trade unions could be trendsetters who make their own learning agendas by drawing less on formal education and more on informal and non-formal learning contexts. This is in parallel with growing political and scientific consciousness of the need to arrive at new educational/vocational policies and practices.Keywords: trade union workers, educational leadership, learning societies, social acting
Procedia PDF Downloads 22218045 Strategies to Improve Learning and Teaching of Software Packages Among Undergraduate Students
Authors: Sara Moridpour
Abstract:
Engineering students need to learn different software packages to meet the emerging industry needs. Face-to-face lectures provide an interactive environment for learning software packages. However, COVID changed expectations of face-to-face learning and teaching. It is essential to enhance the interaction among students and teachers in online and virtual learning and teaching of software packages. The proposed study introduces strategies for teaching engineering software packages in online and hybrid environments and evaluates students’ skills by an authentic assignment.Keywords: teaching software packages, authentic assessment., engineering, undergraduate students
Procedia PDF Downloads 14318044 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University
Authors: Bahloul Amel
Abstract:
The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning
Procedia PDF Downloads 44618043 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 23318042 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 19018041 Explaining E-Learning Systems Usage in Higher Education Institutions: UTAUT Model
Authors: Muneer Abbad
Abstract:
This research explains the e-learning usage in a university in Jordan. Unified theory of acceptance and use of technology (UTAUT) model has been used as a base model to explain the usage. UTAUT is a model of individual acceptance that is compiled mainly from different models of technology acceptance. This research is the initial part from full explanations of the users' acceptance model that use Structural Equation Modelling (SEM) method to explain the users' acceptance of the e-learning systems based on UTAUT model. In this part data has been collected and prepared for further analysis. The main factors of UTAUT model has been tested as different factors using exploratory factor analysis (EFA). The second phase will be confirmatory factor analysis (CFA) and SEM to explain the users' acceptance of e-learning systems.Keywords: e-learning, moodle, adoption, Unified Theory of Acceptance and Use of Technology (UTAUT)
Procedia PDF Downloads 40918040 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 14818039 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors
Authors: Yafit Gabay
Abstract:
Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.Keywords: ADHD, category learning, modality, computational modeling
Procedia PDF Downloads 5118038 Culturally Responsive Teaching for Learner Diversity in Czech Schools: A Literature Review
Authors: Ntite Orji Kalu, Martina Kurowski
Abstract:
Until recently, the Czech Republic had an educational system dominated by indigenous people, who accounted for 95% of the school population. With the increasing influx of migrants and foreign students, especially from outside European Union, came a great disparity among the quality of learners and their learning needs and consideration for the challenges associated with being a minority and living within a foreign culture. This has prompted the research into ways of tailoring the educational system to meet the rising demand of learning styles and needs for the diverse learners in the Czech classrooms. Literature is reviewed regarding the various ways to accommodate the international students considering racial differences, focusing on theoretical approach and pedagogical principles. This study examines the compulsory educational system of the Czech Republic and the position and responsibility of the teacher in fostering a culturally sensitive and inclusive learning environment. Descriptive and content analysis is relied upon for this study. Recommendations are made for stakeholders to imbibe a more responsive environment that enhances the cultural and social integration of all learners.Keywords: culturally responsive teaching, cultural competence, diversity, learners, inclusive education, Czech schools
Procedia PDF Downloads 14818037 The Need for the Utilization of Instructional Materials on the Teaching and Learning of Agricultural Science Education in Developing Countries
Authors: Ogoh Andrew Enokela
Abstract:
This paper dwelt on the need for the utilization of instructional materials with highlights on the type of instructional materials, selection, uses and their importance on the learning and teaching of Agricultural Science Education in developing countries. It further discussed the concept of improvisation with some recommendation in terms of availability, utilization on the teaching and learning of Agricultural Science Education.Keywords: instructional materials, agricultural science education, improvisation, teaching and learning
Procedia PDF Downloads 32418036 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 8318035 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 22618034 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 6618033 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 50318032 Mobile Mediated Learning and Teachers Education in Less Resourced Region
Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana
Abstract:
Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education
Procedia PDF Downloads 29318031 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 14618030 Developing Creative and Critically Reflective Digital Learning Communities
Authors: W. S. Barber, S. L. King
Abstract:
This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.Keywords: online, pedagogy, learning, communities
Procedia PDF Downloads 40618029 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study
Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva
Abstract:
Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education
Procedia PDF Downloads 19118028 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12918027 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 15718026 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 374