Search results for: data space connector
26937 Exploration of a Blockchain Assisted Framework for Through Baggage Interlining: Blocklining
Authors: Mary Rose Everan, Michael McCann, Gary Cullen
Abstract:
International travel journeys, by their nature, incorporate elements provided by multiple service providers such as airlines, rail carriers, airports, and ground handlers. Data needs to be stored by and exchanged between these parties in the process of managing the journey. The fragmented nature of this shared management of mutual clients is a limiting factor in the development of a seamless, hassle-free, end-to-end travel experience. Traditional interlining agreements attempt to facilitate many separate aspects of co-operation between service providers, typically between airlines and, to some extent, intermodal travel operators, including schedules, fares, ticketing, through check-in, and baggage handling. These arrangements rely on pre-agreement. The development of Virtual Interlining - that is, interlining facilitated by a third party (often but not always an airport) without formal pre-agreement by the airlines or rail carriers - demonstrates an underlying demand for a better quality end-to-end travel experience. Blockchain solutions are being explored in a number of industries and offer, at first sight, an immutable, single source of truth for this data, avoiding data conflicts and misinterpretation. Combined with Smart Contracts, they seemingly offer a more robust and dynamic platform for multi-stakeholder ventures, and even perhaps the ability to join and leave consortia dynamically. Applying blockchain to the intermodal interlining space – termed Blocklining in this paper - is complex and multi-faceted because of the many aspects of cooperation outlined above. To explore its potential, this paper concentrates on one particular dimension, that of through baggage interlining.Keywords: aviation, baggage, blocklining, intermodal, interlining
Procedia PDF Downloads 14926936 Scalable Cloud-Based LEO Satellite Constellation Simulator
Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi
Abstract:
Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter
Procedia PDF Downloads 38926935 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data
Authors: Digvijaysingh S. Bana, Kiran R. Trivedi
Abstract:
This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data
Procedia PDF Downloads 46926934 Pattern Recognition Search: An Advancement Over Interpolation Search
Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi
Abstract:
Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.Keywords: array, complexity, index, sorting, space, time
Procedia PDF Downloads 25026933 Assessment of Cafe Design Criteria in a Consumerist Society: An Approach on Place Attachment
Authors: Azadeh Razzagh Shoar, Hassan Sadeghi Naeini
Abstract:
There is little doubt that concepts such as space and place have become more common considering that human beings have grown more apart and more than having contact with each other, they are in contact with objects, spaces, and places. Cafés, as a third place which is neither home nor workplace, have attracted these authors’ interests, who are industrial and interior designers. There has been much research on providing suitable cafés, customer behavior, and criteria for spatial sense. However, little research has been carried out on consumerism, desire for variety, and their relationship with changing places, and specifically cafes in term of interior design. In fact, customer’s sense of place has mostly been overlooked. In this case study, authors conducted to challenge the desire for variety and consumerism as well as investigating the addictive factors in cafés. From the designers’ point of view and by collecting data through observing and interviewing café managers, this study investigates and analyzes the customers in two cafes located in a commercial building in northern Tehran (a part of city with above average economic conditions). Since these two cafés are at the same level in terms of interior and spatial design, the question is raised as to why customers patronize the newly built café despite their loyalty to the older café. This study aims to investigate and find the criteria based on the sense of space (café) in a consumerist society, a world where consumption is a myth. Going to cafés in a larger scale than a product can show a selection and finally who you are, where you go, which brand of coffee you prefer, and what time of the day you would like to have your coffee. The results show that since people spend time in cafés more than any other third place, the interaction they have with their environment is more than anything else, and they are consumers of time and place more than coffee or any other product. Also, if there is a sense of consumerism and variety, it is mostly for the place rather than coffee and other products. To satisfy this sense, individuals go to a new place (the new café). It can be easily observed that this sense overshadows the sense of efficiency, design, facilities and all important factor for a café.Keywords: place, cafe, consumerist society, consumerism, desire for variety
Procedia PDF Downloads 16926932 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9026931 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9926930 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 44626929 Chaotic Analysis of Acid Rains with Times Series of pH Degree, Nitrate and Sulphate Concentration on Wet Samples
Authors: Aysegul Sener, Gonca Tuncel Memis, Mirac Kamislioglu
Abstract:
Chaos theory is one of the new paradigms of science since the last century. After determining chaos in the weather systems by Edward Lorenz the popularity of the theory was increased. Chaos is observed in many natural systems and studies continue to defect chaos to other natural systems. Acid rain is one of the environmental problems that have negative effects on environment and acid rains values are monitored continuously. In this study, we aim that analyze the chaotic behavior of acid rains in Turkey with the chaotic defecting approaches. The data of pH degree of rain waters, concentration of sulfate and nitrate data of wet rain water samples in the rain collecting stations which are located in different regions of Turkey are provided by Turkish State Meteorology Service. Lyapunov exponents, reconstruction of the phase space, power spectrums are used in this study to determine and predict the chaotic behaviors of acid rains. As a result of the analysis it is found that acid rain time series have positive Lyapunov exponents and wide power spectrums and chaotic behavior is observed in the acid rain time series.Keywords: acid rains, chaos, chaotic analysis, Lypapunov exponents
Procedia PDF Downloads 15126928 Inertial Spreading of Drop on Porous Surfaces
Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi
Abstract:
The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium
Procedia PDF Downloads 14326927 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 16726926 The Reflexive Interaction in Group Formal Practices: The Question of Criteria and Instruments for the Character-Skills Evaluation
Authors: Sara Nosari
Abstract:
In the research field on adult education, the learning development project followed different itineraries: recently it has promoted adult transformation by practices focused on the reflexive oriented interaction. This perspective, that connects life stories and life-based methods, characterizes a transformative space between formal and informal education. Within this framework, in the Nursing Degree Courses of Turin University, it has been discussed and realized a formal reflexive path on the care work professional identity through group practices. This path compared the future care professionals with possible experiences staged by texts used with the function of a pre-tests: these texts, setting up real or believable professional situations, had the task to start a reflection on the different 'elements' of care work professional life (relationship, educational character of relationship, relationship between different care roles; or even human identity, aims and ultimate aim of care, …). The learning transformative aspect of this kind of experience-test is that it is impossible to anticipate the process or the conclusion of reflexion because they depend on two main conditions: the personal sensitivity and the specific situation. The narrated experience is not a device, it does not include any tricks to understand the answering advance; the text is not aimed at deepening the knowledge, but at being an active and creative force which takes the group to compare with problematic figures. In fact, the experience-text does not have the purpose to explain but to problematize: it creates a space of suspension to live for questioning, for discussing, for researching, for deciding. It creates a space 'open' and 'in connection' where each one, in comparing with others, has the possibility to build his/her position. In this space, everyone has to possibility to expose his/her own argumentations and to be aware of the others emerged points of view, aiming to research and find the own personal position. However, to define his/her position, it is necessary to learn to exercise character skills (conscientiousness, motivation, creativity, critical thinking, …): if these not-cognitive skills have an undisputed evidence, less evident is how to value them. The paper will reflect on the epistemological limits and possibility to 'measure' character skills, suggesting some evaluation criteria.Keywords: transformative learning, educational role, formal/informal education, character-skills
Procedia PDF Downloads 19726925 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example
Abstract:
As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis
Procedia PDF Downloads 2026924 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: text mining, topic extraction, independent, incremental, independent component analysis
Procedia PDF Downloads 31626923 Open Data for e-Governance: Case Study of Bangladesh
Authors: Sami Kabir, Sadek Hossain Khoka
Abstract:
Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data
Procedia PDF Downloads 35826922 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application
Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr
Abstract:
Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion
Procedia PDF Downloads 40226921 Assessment of the Natural and Human Potential of the Municipality of Tirana for the Development of Agritourism
Authors: Dritan Lloçi, Xhulia Bygjymi
Abstract:
The topic is about one of the new trends with the greatest expectations in the field of tourism, such as agritourism. It is chosen exactly this type of tourism to address as this issue is one of the newest trends not only for Tirana or Albania but also beyond. The other reason is that this topic is quite current and challenging for the reality in which we find ourselves, and the opportunities for research work and to make our own contribution are quite large. It is chosen Tirana because seeing the many opportunities it offers for the development of agritourism as a result of the rich natural potential it offers; the fact that it is the capital of Albania makes this space absorb a good part of the investments in the rural tourism sector but not alone. The study is organized into several main issues regarding the natural and human potentials of the area, which are in function of the development of agrotourism. The first issue has to do with the natural potentials of the municipality of Tirana and how they can be used for agritourism. The second issue has to do with the cultural potential that the municipality of Tirana possesses, causing tourist flows to be more concentrated in this geographical-administrative space. The third issue has to do with the human potential that is a function of agrotourism. So the way of life, hospitality, cooking, etc.Keywords: agrotourism, natural potential, agrotourism farms, tirana municipality, tourism development
Procedia PDF Downloads 8326920 Incomplete Existing Algebra to Support Mathematical Computations
Authors: Ranjit Biswas
Abstract:
The existing subject Algebra is incomplete to support mathematical computations being done by scientists of all areas: Mathematics, Physics, Statistics, Chemistry, Space Science, Cosmology etc. even starting from the era of great Einstein. A huge hidden gap in the subject ‘Algebra’ is unearthed. All the scientists today, including mathematicians, physicists, chemists, statisticians, cosmologists, space scientists, and economists, even starting from the great Einstein, are lucky that they got results without facing any contradictions or without facing computational errors. Most surprising is that the results of all scientists, including Nobel Prize winners, were proved by them by doing experiments too. But in this paper, it is rigorously justified that they all are lucky. An algebraist can define an infinite number of new algebraic structures. The objective of the work in this paper is not just for the sake of defining a distinct algebraic structure, but to recognize and identify a major gap of the subject ‘Algebra’ lying hidden so far in the existing vast literature of it. The objective of this work is to fix the unearthed gap. Consequently, a different algebraic structure called ‘Region’ has been introduced, and its properties are studied.Keywords: region, ROR, RORR, region algebra
Procedia PDF Downloads 5626919 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts
Authors: Thomas Wimmer, Bernhard Weigand
Abstract:
The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization
Procedia PDF Downloads 35426918 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 26826917 Cyber Security in Russia: Offense, Defense and Strategy in Cyberspace
Authors: Da Eun Sung
Abstract:
In today’s world, cyber security has become an important international agenda. As the information age has arrived, the need for cyber defense against cyber attacks is mounting, and the significance of cyber cooperation in the international community is drawing attention. Through the course, international society has agreed that the institutionalization of international norms dealing with cyber space and cyber security is crucial ever. Nevertheless, the West, led by the United States of America, and 'the East', composed of Russia and China, have shown conflicting views on forming international norms and principles which would regulate and ward off the possible threats in cyber space. Thus, the international community hasn’t yet to reach an agreement on cyber security. In other words, the difference between both sides on the approach and understanding of principles, objects, and the definition has rendered such. Firstly, this dissertation will cover the Russia’s perception, strategy, and definition on cyber security through analyzing primary source. Then, it will delve into the two contrasting cyber security strategy between Russia and the US by comparing them. And in the conclusion, it will seek the possible solution for the cooperation in the field of cyber security. It is quite worthwhile to look into Russia’s views, which is the main counterpart to the US in this field, especially when the efforts to institutionalize cyber security by the US-led international community have met with their boundaries, and when the legitimacy of them have been challenged.Keywords: cyber security, cyber security strategic, international relation in cyberspace, Russia
Procedia PDF Downloads 32426916 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16826915 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization
Procedia PDF Downloads 32326914 The Role of Validity and Reliability in the Development of Online Testing
Authors: Ani Demetrashvili
Abstract:
The purpose of this paper is to show how students trust online tests and determine validity and reliability in the development of online testing. The pandemic situation changed every field in the world, and it changed education as well. Educational institutions moved into the online space, which was the only decision they were able to make at that time. Online assessment through online proctoring was a totally new challenge for educational institutions, and they needed to deal with it successfully. Participants were chosen from the English language center. The validity of the questionnaire was identified according to the Likert scale and Cronbach’s alpha; later, data from the participants was analyzed as well. The article summarizes literature that is available about online assessment and is interesting for people who are interested in this kind of assessment. Based on the research findings, students favor in-person testing over online assessment due to their lack of experience and skills in the latter.Keywords: online assessment, online proctoring
Procedia PDF Downloads 4626913 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 50026912 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 33626911 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 20626910 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: data quality, performance, system quality, Kingdom of Bahrain
Procedia PDF Downloads 50026909 The Book of Lies: The Christian Bible's Colonialism over and Appropriation of Occultism
Authors: Samantha Huff
Abstract:
This research seeks to examine the relationship between occultism and the traditional religion of Christianity. The focus of this particular project is to deconstruct occultism and occult religion: how it develops, where it is applied, how and when it is applied. The next step is to make connections between the structure of occultism and the structure of Christianity. Do Christianity and the Occult appear, textually, the same way? What does that mean culturally? This project seeks to examine the historical similarities of occultism and Christianity practices and tradition, and how, as a whole, Christianity appropriates and colonializes occultism through examination into the Christian Bible and popular occult texts: The Book of the Law by Aleister Crowley and The Secret Doctrine: The Synthesis of Science, Religion, and Philosophy by Helena Petrovna Blavatsky. Through examining occultism and Christianity and applying it to popular cultural theories (Ritual Space by Nick Couldry, Muted Group Theory by Shirley Ardener, and Mythologies by Roland Barethes), it is entirely possible to see how Christianity appropriates occultism and uses their stronghold on society as a means to colonialize occult traditions and practices.Keywords: appropriation, Christianity, colonialism, cultural theory, muted group theory, mythologies, occultism, ritual space
Procedia PDF Downloads 15826908 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 483