Search results for: Thunbergia laurifolia extract
990 Utilization of Juncus acutus as Alternative Feed Resource in Ruminants
Authors: Nurcan Cetinkaya
Abstract:
The aim of this paper is to bring about the utilization of Juncus acutus as an alternative roughage resource in ruminant nutrition. In Turkey, JA is prevailing plant of the natural grassland in Kizilirmak Delta, Samsun. Crude nutrient values such as crude protein (CP), ether extract (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin(ADL) including antioxidant activity, total phenolic and flavonoid compounds, total organic matter digestibility (OMD) and metabolisable energy (ME) values of Juncus acutus stem, seed, and also its mixture with maize silage were estimated. and published. Furthermore, the effects of JA over rumen cellulolitic bacteria were studied. The obtained results from different studies conducted on JA by our team show that Juncus acutus may be a new roughage source in ruminant nutrition.Keywords: antioxidant activity, cellulolytic bacteria, Juncus acutus, organic matter digestibility
Procedia PDF Downloads 283989 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 369988 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function
Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi
Abstract:
Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model
Procedia PDF Downloads 183987 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 83986 Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur
Authors: Roukia Hammoudi, Chabrouk Farid, Dehak Karima, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 603985 Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur
Authors: Roukia Hammoudi, Dehak Karima, Chabrouk Farid, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 595984 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 401983 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives
Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián
Abstract:
A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients
Procedia PDF Downloads 64982 In vitro Antioxidant and Antibacterial Activities of Methanol Extracts of Tamus communis L. from Algeria
Authors: F. Belkhiri, A. Baghiani, S. Boumerfeg, N. Charef, S. Khennouf, L. Arrar
Abstract:
The present study was conducted to evaluate the in vitro antioxidant and antibacterial properties of methanolic extracts from roots of Tamus communis L. (TCRE), which is a plant used in traditional medicine in Algeria. The antioxidant potential of pattern was evaluated using tow complementary techniques, inhibition of free radical DPPH and the test of β-Carotene/linoleic acid. The antioxidant test indicates that non-polar fractions of TCRE (chloroform and ethyl acetate fractions) were more active than the polar fractions. Among these fractions, the chloroform extract appear in the DPPH test an IC50 of (18.89 µg/ml) comparable to that of BHT (18.6 µg/ml). This fraction was able to inhibiting the oxidation of β-Carotene with a percentage of inhibition (89.84 %). In antibacterial test, non-polar fractions showed antibacterial activity very important compared with the polar fractions. These fractions have inhibited the growth of four from nine bacterial strains, causing zones of inhibition from 08 to 23 mm of diameter.Keywords: antioxidant activity, antibacterial activity, Tamus communis L., polar fractions
Procedia PDF Downloads 587981 Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
Authors: Saed Khawaldeh, Mohamed Elsharnouby, Alaa Eddin Alchalabi, Usama Pervaiz, Tajwar Aleef, Vu Hoang Minh
Abstract:
Taxonomic classification has a wide-range of applications such as finding out more about the evolutionary history of organisms that can be done by making a comparison between species living now and species that lived in the past. This comparison can be made using different kinds of extracted species’ data which include DNA sequences. Compared to the estimated number of the organisms that nature harbours, humanity does not have a thorough comprehension of which specific species they all belong to, in spite of the significant development of science and scientific knowledge over many years. One of the methods that can be applied to extract information out of the study of organisms in this regard is to use the DNA sequence of a living organism as a marker, thus making it available to classify it into a taxonomy. The classification of living organisms can be done in many machine learning techniques including Neural Networks (NNs). In this study, DNA sequences classification is performed using Convolutional Neural Networks (CNNs) which is a special type of NNs.Keywords: deep networks, convolutional neural networks, taxonomic classification, DNA sequences classification
Procedia PDF Downloads 442980 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase
Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan
Abstract:
This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.Keywords: delamination, lamb wave, finite element method, EMD, instantaneous phase
Procedia PDF Downloads 320979 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 143978 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm
Authors: Phawin Sangsuvan, Chutimet Srinilta
Abstract:
This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques
Procedia PDF Downloads 477977 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 586976 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 657975 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 78974 Mosquito Repellent Finishing of Cotton Using Pepper Tree (Schinus molle) Seed Oil Extract
Authors: Granch Berhe Tseghai, Tekalgn Gebremedhin Belay, Abrehaley Hagos Gebremariam
Abstract:
Mosquito repellent textiles are one of the most growing ways to advance the textile field by providing the needed characteristics of protecting against mosquitoes, especially in the tropical areas. These types of textiles ensure the protection of human beings from the mosquitoes and the mosquito-borne disease includes malaria, filariasis and dengue fever. In this work Schinus Molle oil (pepper tree oil) was used for mosquito repellent finish as a preformatted thing. This study focused on the penetration of mosquito repellent finish in textile applications as well as nature based alternatives to commercial chemical mosquito repellents in the market. Suitable techniques and materials to achieve mosquito repellency are discussed and pointed out according to our project. In this study textile, sample was treated with binder and schinus oil. The different property has been studied for effective mosquito repellency.Keywords: cotton, Schinus molle seed oil, mosquito repellent, mosquito-borne diseases
Procedia PDF Downloads 285973 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition
Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa
Abstract:
Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin
Procedia PDF Downloads 142972 Protective Approach of Mentha Piperita against Cadmium Induced Renotoxicity in Albino Rats
Authors: Baby Tabassum, Priya Bajaj
Abstract:
Cadmium is the second most hazardous heavy metal occurring in both elemental as well as compound forms. It is a highly toxic metal with a very high bio-concentration factor (BCF>100). WHO permitted groundwater cadmium concentration is 0.005 mg/L only, but reality is far away from this limit. A number of natural and anthropogenic industrial activities contribute to the spread of cadmium into the environment. The present study had been designated to find out the renal changes at functional level after cadmium intoxication and protection against these changes offered by Mentha piperata. For the purpose, albino rats were selected as the model organism. Cadmium significantly increases the serum level of serum proteins and nitrogenous wastes showing reduced filtration rate of kidneys. Pretreatment with Mentha piperata leaf extract causes significant retention of these levels to normalcy. These findings conclude that Cadmium exposure affects renal functioning but Mentha could prevent it, proving its nephro-protective potential against heavy metal toxicity.Keywords: albino rat, cadmium, Mentha piperata, nephrotoxicity
Procedia PDF Downloads 399971 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 297970 Characterization Techniques for Studying Properties of Nanomaterials
Authors: Nandini Sharma
Abstract:
Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.Keywords: characterization, structural, optical, nanomaterial
Procedia PDF Downloads 146969 HPTLC Metabolite Fingerprinting of Artocarpus champeden Stembark from Several Different Locations in Indonesia and Correlation with Antimalarial Activity
Authors: Imam Taufik, Hilkatul Ilmi, Puryani, Mochammad Yuwono, Aty Widyawaruyanti
Abstract:
Artocarpus champeden Spreng stembark (Moraceae) in Indonesia well known as ‘cempedak’ had been traditionally used for malarial remedies. The difference of growth locations could cause the difference of metabolite profiling. As a consequence, there were difference antimalarial activities in spite of the same plants. The aim of this research was to obtain the profile of metabolites that contained in A. champeden stembark from different locations in Indonesia for authentication and quality control purpose of this extract. The profiling had been performed by HPTLC-Densitometry technique and antimalarial activity had been also determined by HRP2-ELISA technique. The correlation between metabolite fingerprinting and antimalarial activity had been analyzed by Principle Component Analysis, Hierarchical Clustering Analysis and Partial Least Square. As a result, there is correlation between the difference metabolite fingerprinting and antimalarial activity from several different growth locations.Keywords: antimalarial, artocarpus champeden spreng, metabolite fingerprinting, multivariate analysis
Procedia PDF Downloads 311968 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD
Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi
Abstract:
Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition
Procedia PDF Downloads 398967 Antioxidant Activity of Germinated African Yam Bean (Sphenostylis Stenocarpa) in Alloxan Diabetic Rats
Authors: N. Uchegbu Nneka
Abstract:
This study was conducted to investigate the effect of the antioxidant activity of germinated African Yam Bean (AYB) on oxidative stress markers in alloxan-induced diabetic rat. Rats were randomized into three groups; control, diabetic and germinated AYB–treated diabetic rats. The Total phenol and flavonoid content and DPPH radical scavenging activity before and after germination were investigated. The glucose level, lipid peroxidation and reduced glutathione of the animals were also determined using the standard technique for four weeks. Germination increased the total phenol, flavonoid and antioxidant activity of AYB extract by 19.14%, 32.28%, and 57.25% respectively. The diabetic rats placed on germinated AYB diet had a significant decrease in the blood glucose and lipid peroxidation with a corresponding increase in glutathione (p<0.05). These results demonstrate that consumption of germinated AYB can be a good dietary supplement in inhibiting hyperglycemia/hyperlipidemia and the prevention of diabetic complication associated with oxidative stress.Keywords: African yam bean, antioxidant, diabetes, total phenol
Procedia PDF Downloads 359966 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 82965 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 149964 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 476963 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.Keywords: big data, image processing, multispectral, principal component analysis
Procedia PDF Downloads 178962 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 114961 Oil Contents, Mineral Compositions, and Their Correlations in Wild and Cultivated Safflower Seeds
Authors: Rahim Ada, Mustafa Harmankaya, Sadiye Ayse Celik
Abstract:
The safflower seed contains about 25-40% solvent extract and 20-33% fiber. It is well known that dietary phospholipids lower serum cholesterol levels effectively. The nutrient composition of safflower seed changes depending on region, soil and genotypes. This research was made by using of six natural selected (A22, A29, A30, C12, E1, F4, G8, G12, J27) and three commercial (Remzibey, Dincer, Black Sun1) varieties of safflower genotypes. The research was conducted on field conditions for two years (2009 and 2010) in randomized complete block design with three replications in Konya-Turkey ecological conditions. Oil contents, mineral contents and their correlations were determined in the research. According to the results, oil content was ranged from 22.38% to 34.26%, while the minerals were in between the following values: 1469, 04-2068.07 mg kg-1 for Ca, 7.24-11.71 mg kg-1 for B, 13.29-17.41 mg kg-1 for Cu, 51.00-79.35 mg kg-1 for Fe, 3988-6638.34 mg kg-1 for K, 1418.61-2306.06 mg kg-1 for Mg, 11.37-17.76 mg kg-1 for Mn, 4172.33-7059.58 mg kg-1 for P and 32.60-59.00 mg kg-1 for Zn. Correlation analysis that was made separately for the commercial varieties and wild lines showed that high level of oil content was negatively affected by all the investigated minerals except for K and Zn in the commercial varieties.Keywords: safflower, oil, quality, mineral content
Procedia PDF Downloads 267