Search results for: neural pathways
1389 Incidence of Vulval, Vaginal and Cervical Disease in Rapid Access Clinic in a London Tertiary Hospital Setting
Authors: Kieren Wilson, Gulnaz Majeed
Abstract:
NHS constitution gives rights to the patient with suspected cancer to be seen by a cancer specialist within 2 weeks of referral. Guys and St Thomas Hospital (GSTT) is one of the largest cancer centres in London. NICE guidelines have provided guidance for health professionals to refer patients appropriately to RAC. In GSTT suspected gynae cancer referrals are mostly by NHS e-Referral Service with some fax, emails as well as paper referrals. The objective of this study was to evaluate compliance with 2-week referral pathway with emphasis on one stop diagnostic service with supporting efficient pathways. A prospective evaluation over 3 months (1 Jan 2017 to 31 Mar 2017) was undertaken. There were 26 clinics, 761 patients were booked in the clinics with a DNA rate of 13% (n=101) hence 606 patients were seen. Majority of referrals were for post menopausal bleeding (PMB) 25% (n=194) followed by cervical, vaginal, vulval reasons 23% (n=179) (abnormal cytology excluded as patients directly referred to colposcopy unit in GSTT), ovarian 7% (n=54) and endometrial 5% (n=41). Women with new or previous established diagnosis of cancer were 24, cervical (n=17), vulva (n=6) and vagina (n=1). Multifocal preinvasive disease vulva (VIN), vagina (VAIN) and cervix (CIN) was confirmed in twenty-six patients 4% (high prevalence in HIV patients). Majority of cervical referrals: PCB (n=14), cervical erosion (n=7), polyps (n=9) and cervical cyst were benign. However, two women with PMB had cervical cancer. Only 2 out of 13 referrals with vaginal concerns had VAIN. One case with non-cervical glandular cytology was confirmed to have endometrial cancer. One stop service based on the diagnostic support of ultrasound, colposcopy and hysteroscopy was achieved in 54% (n=359). Patients were discharged to GP, benign gynaecology, endometriosis, combined vulval/dermatology clinic or gynae oncology. 33% (n=202) required a second visit, 12% (n=70) third visit, 3% (n=19) fourth visit, 1% (n=4) fifth visit and 1% (n=6) sixth visit. Main reasons for follow ups were the unavailability of diagnostic slots, patient choice, need for interpreters, the discussion following gynae MDM review for triage to benign gynae, delay in availability of diagnostic results like histology/MRI/CT. Recommendations following this study are multi disciplinary review of pathways with the availability of additional diagnostic procedure slots to aim for one stop service. Furthermore, establishment of virtual and telephone consultations to reduce follow ups.Keywords: multifocal disease, post menopausal bleeding, preinvasive disease, rapid access clinic
Procedia PDF Downloads 1871388 Women's Parliamentary Representation in Uganda: A Relative Analysis of the Pathways of Women on the Open vs. Affirmative Action Seat
Authors: Doreen Chemutai
Abstract:
While women's parliamentary representation has increased over the years, most women contest the affirmative action seat (A.A). There is a lack of knowledge on why women prefer the affirmative seat vis- a- vis the open seat. This study argues that comparing women's path on the reserved and open seat to parliamentary representation enables us to pass judgment on why this trend continues. This paper provides a narrative analysis of women members of parliament's (MPs) trajectory in the open seat and Affirmative Action seat to parliamentary representation. Purposive sampling was used to select participants from the Northern Uganda districts of Kitgum, Pader, Oyam, Agago, and Gulu. The eight women MPs chosen for the study completed in-depth interviews exploring their qualifications, careers, and experiences before joining the political office, their party affiliation, and the kind of seat they currently occupy in the 10th parliament. Findings revealed similarities between women on the open and reserved to include; women generally irrespective of the seat they choose to contest for find it difficult to win elections because voters doubt women's effectiveness as leaders. All women as incumbents find it difficult to be re-elected because their evaluation is harsher than that for men. Findings also revealed that women representatives are motivated by their personal lived experiences, community work, educational leadership, and local leadership. The study establishes that the popularity of the party in a given geographical location and the opponents' quality will determine the success of the parliamentary candidate in question irrespective of whether one is contesting on the open or Affirmative seat. However, the study revealed differences between MPs' experiences in the quest for the parliamentary seat, females on the open seat are subjected to gender discrimination in elections by party leadership, stereotyped, and are victims of propaganda in the initial contesting stages. Women who win elections in the open seat have to be superior to their male opponents. In other circumstances where a woman emerges successful, she may be voted for due to other reasons beyond capability, such as physical appearance or sociability. On the other hand, MPs' revelations on affirmative action seats show that the political terrain is smoother despite larger constituencies. Findings show that women on the Affirmative Action seat do not move to the open seat because of the comfort associated with the seat and maintain consistency, since the constituencies doubt the motives of representatives who change from one seat to another. The study concludes that women MPs who contest on the open seat are likely to suffer structural barriers such as gender discrimination and political recruitment bias instead of women on the affirmative seat. This explains why the majority of women contest on the affirmative seat.Keywords: affirmative action seats, open seats, parliamentary representation, pathways
Procedia PDF Downloads 1541387 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 2971386 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1111385 Genetic Analysis of CYP11A1 Gene with Polycystic Ovary Syndrome from North India
Authors: Ratneev Kaur, Tajinder Kaur, Anupam Kaur
Abstract:
Introduction: Polycystic Ovary Syndrome (PCOS) is a heterogenous disorder of endocrine system among women of reproductive age. PCOS is characterized by hyperandrogenism, anovulation, polycystic ovaries, hirsutism, obesity, and hyperinsulinemia. Several pathways are implicated in its etiology including the metabolic pathway of steroid hormone synthesis regulatory pathways. PCOS is an androgen excess disorder, genes operating in steroidogenesis may alter pathogenesis of PCOS. The cytochrome P450scc is a cholesterol side chain cleavage enzyme coded by CYP11A1 gene and catalyzes conversion of cholesterol to pregnenolone, the initial and rate-limiting step in steroid hormone synthesis. It is postulated that polymorphisms in this gene may play an important role in the regulation of CYP11A1 expression and leading to increased or decreased androgen production. The present study will be the first study from north India to best of our knowledge, to analyse the association of CYP11A1 (rs11632698) polymorphism in women suffering from PCOS. Methodology: The present study was approved by ethical committee of Guru Nanak Dev University in consistent with declaration of Helsinki. A total of 300 samples (150 PCOS cases and 150 controls) were recruited from Hartej hospital, for the present study. Venous blood sample (3ml) was withdrawn from women diagnosed with PCOS by doctor, according to Rotterdam 2003 criteria and from healthy age matched controls only after informed consent and detailed filled proforma. For molecular genetics analysis, blood was stored in EDTA vials. After DNA isolation by organic method, PCR-RFLP approach was used for genotyping and association analysis of rs11632698 polymorphism. Statistical analysis was done to check for significance of selected polymorphism with PCOS. Results: In 150 PCOS cases, the frequency of AA, AG and GG genotype was found to be 48%, 35%, and 13% compared to 62%, 27% and 8% in 150 controls. The major allele (A) and minor allele (G) frequency was 68% and 32% in cases and 78% and 22% in controls. Minor allele frequency was higher in cases as compared to controls, as well as the distribution of genotype was observed to be statistically significant (ᵡ²=6.525, p=0.038). Odds ratio in dominant, co-dominant and recessive models observed was 1.81 (p=0.013), 1.54 (p=0.012) and 1.77 (p=0.132) respectively. Conclusion: The present study showed statistically significant association of rs11632698 with PCOS (p=0.038) in North Indian women.Keywords: polycystic ovary syndrome, CYP11A1, rs11632698, hyperandrogenism
Procedia PDF Downloads 1411384 Thermal Technologies Applications for Soil Remediation
Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri
Abstract:
This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements
Procedia PDF Downloads 2931383 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1161382 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1611381 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1881380 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2221379 Role of Alternative Dispute Resolution (ADR) in Advancing UN-SDG 16 and Pathways to Justice in Kenya: Opportunities and Challenges
Authors: Thomas Njuguna Kibutu
Abstract:
The ability to access justice is an important facet of securing peaceful, just, and inclusive societies, as recognized by Goal 16 of the 2030 Agenda for Sustainable Development. Goal 16 calls for peace, justice, and strong institutions to promote the rule of law and access to justice at a global level. More specifically, Target 16.3 of the Goal aims to promote the rule of law at the national and international levels and ensure equal access to justice for all. On the other hand, it is now widely recognized that Alternative Dispute Resolution (hereafter, ADR) represents an efficient mechanism for resolving disputes outside the adversarial conventional court system of litigation or prosecution. ADR processes include but are not limited to negotiation, reconciliation, mediation, arbitration, and traditional conflict resolution. ADR has a number of advantages, including being flexible, cost-efficient, time-effective, and confidential, and giving the parties more control over the process and the results, thus promoting restorative justice. The methodology of this paper is a desktop review of books, journal articles, reports and government documents., among others. The paper recognizes that ADR represents a cornerstone of Africa’s, and more specifically, Kenya’s, efforts to promote inclusive, accountable, and effective institutions and achieve the objectives of goal 16. In Kenya, and not unlike many African countries, there has been an outcry over the backlog of cases that are yet to be resolved in the courts and the statistics have shown that the numbers keep on rising. While ADR mechanisms have played a major role in reducing these numbers, access to justice in the country remains a big challenge, especially to the subaltern. There is, therefore, a need to analyze the opportunities and challenges facing the application of ADR mechanisms as tools for accessing justice in Kenya and further discuss various ways in which we can overcome these challenges to make ADR an effective alternative to dispute resolution. The paper argues that by embracing ADR across various sectors and addressing existing shortcomings, Kenya can, over time, realize its vision of a more just and equitable society. This paper discusses the opportunities and challenges of the application of ADR in Kenya with a view to sharing the lessons and challenges with the wider African continent. The paper concludes that ADR mechanisms can provide critical pathways to justice in Kenya and the African continent in general but come with distinct challenges. The paper thus calls for concerted efforts of respective stakeholders to overcome these challenges.Keywords: mediation, arbitration, negotiation, reconsiliation, Traditional conflict resolution, sustainable development
Procedia PDF Downloads 291378 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1571377 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1491376 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1151375 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1381374 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways
Authors: Anirudh Lahiri
Abstract:
Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.
Procedia PDF Downloads 411373 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 931372 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1001371 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2071370 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 3571369 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2751368 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2591367 Cardiac Hypertrophy in Diabetes; The Role of Factor Forkhead Box Class O-Regulation by O-GlcNAcylation
Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian
Abstract:
Cardiac hypertrophy arises in response to persistent increases in hemodynamic loads. In comparison, diabetic cardiomyopathy is defined by an abnormal myocardial changes without other cardiac-related risk factors. Pathological cardiac hypertrophy and myocardial remodeling are hallmarks of cardiovascular diseases and are risk factors for heart failure. The transcription factor forkhead box class O (FOXOs) can protect heart tissue by hostile oxidative stress and stimulating apoptosis and autophagy. FOXO proteins, as sensitive elements and mediators in response to environmental changes, have been revealed to prevent and inverse cardiac hypertrophy. FOXOs are inhibited by insulin and are critical mediators of insulin action. Insulin deficiency and uncontrolled diabetes lead to a catabolic state. FOXO1 acts downstream of the insulin-dependent pathways, which are dysregulated in diabetes. It regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K/Akt activation, which are critical regulators of cardiac hypertrophy. The complex network of signaling pathways comprising insulin/IGF-1 signaling, AMPK, JNK, and Sirtuins regulate the development of cardiovascular dysfunction by modulating the activity of FOXOs. Insulin receptors and IGF1R act via the PI3k/Akt and the MAPK/ERK pathways. Activation of Akt in response to insulin or IGF-1 induces phosphorylation of FOXOs. Increased protein synthesis induced by activation of the IGF-I/Akt/mTOR signaling pathway leads to hypertrophy. This pathway and the myostatin/Smad pathway are potent negative muscle development regulators. In cardiac muscle, insulin receptor substrates (IRS)-1 or IRS-2 activates the Akt signaling pathway and inactivate FOXO1. Under metabolic stress, p38 MAPK promotes degradation of IRS-1 and IRS-2 in cardiac myocytes and activates FOXO1, leading to cardiomyopathy. Sirt1 and FOXO1 interaction play an essential role in starvation-induced autophagy in cardiac metabolism. Inhibition of Angiotensin-II induced cardiomyocyte hypertrophy is associated with reduced FOXO1 acetylation and activation of Sirt1. The NF-κB, ERK, and FOXOs are de-acetylated by SIRT1. De-acetylation of FOXO1 induces the expression of genes involved in autophagy and stimulates autophagy flux. Therefore, under metabolic stress, FOXO1 can cause diabetic cardiomyopathy. The overexpression of FOXO1 leads to decreased cardiomyocyte size and suppresses cardiac hypertrophy through inhibition of the calcineurin–NFAT pathway. Diabetes mellitus is associated with elevation of O-GlcNAcylation. Some of its binding partners regulate the substrate selectivity of O-GlcNAc transferase (OGT). O-GlcNAcylation of essential contractile proteins may inhibit protein-protein interactions, reduce calcium sensitivity, and modulate contractile function. Uridine diphosphate (UDP)-GlcNAc is the obligatory substrate of OGT, which catalyzes a reversible post-translational protein modification. The increase of O-GlcNAcylation is accompanied by impaired cardiac hypertrophy in diabetic hearts. Inhibition of O-GlcNAcylation blocks activation of ERK1/2 and hypertrophic growth. O-GlcNAc modification on NFAT is required for its translocation from the cytosol to the nucleus, where NFAT stimulates the transcription of various hypertrophic genes. Inhibition of O-GlcNAcylation dampens NFAT-induced cardiac hypertrophic growth. Transcriptional activity of FOXO1 is enriched by improved O-GlcNAcylation upon high glucose stimulation or OGT overexpression. In diabetic conditions, the modification of FOXO1 by O-GlcNAc is promoted in cardiac troponin I and myosin light chain 2. Therefore targeting O-GlcNAcylation represents a potential therapeutic option to prevent hypertrophy in the diabetic heart.Keywords: diabetes, cardiac hypertrophy, O-GlcNAcylation, FOXO1, Akt, PI3K, AMPK, insulin
Procedia PDF Downloads 1071366 A Balance Sheet On The Value Of Aid Funding And Delivery: Ingo To Ngo Pathways In Nigeria
Authors: Glory Okereke
Abstract:
Several research on the value of aid funding and delivery have emphasized the importance of partnership and accountability in implementing development projects between INGOs and NGOs. Despite challenges in accessing detailed information on their impact due to the extension of information they are willing to provide, this pathway has been seen as an alternative approach and more beneficial than aid funding and delivery through the state. This paper tends to analyze this relationship using liberal and international relations theories to understand the positive and negative aspects of INGO to NGO pathway as a better alternative to economic development. Looking through a broad spectrum of economic development, the paper focuses on Nigeria and analyzes existing empirical literature of INGOs with local NGOs with a comparative analysis of bilateral aid relations with the Nigerian government.Keywords: NGOS, development, Nigeria, liberal theories, aid
Procedia PDF Downloads 361365 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 991364 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 1981363 Comparison of the Amount of Microplastics in Plant- And Animal-Based Milks
Authors: Meli̇sa Aşci, Berk Kiliç, Emine Ulusoy
Abstract:
Ingestion of microplastics in humans has been increasing rapidly, as such hazardous materials are abundant in multiple food products, specifically milks. With increasing consumption rates, humans have been ingesting microplastics on a daily basis, making them prone to be intoxicated and even cause the disruption of intracellular pathways and liver cell disruption, and eventually tissue and organ damage. In this experiment, different milk types(animal-based and plant-based) were tested for microplastics. Results showed that animal-based milks contained a higher concentration of microplastics compared to plant-based milks. Research has shown that in addition to causing health issues in humans, microplastics can also affect livestock animals and plants.Keywords: microplastics, plant-based milks, animal-based milks, preventive nutrition
Procedia PDF Downloads 241362 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 871361 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 901360 De novo Transcriptome Assembly of Lumpfish (Cyclopterus lumpus L.) Brain Towards Understanding their Social and Cognitive Behavioural Traits
Authors: Likith Reddy Pinninti, Fredrik Ribsskog Staven, Leslie Robert Noble, Jorge Manuel de Oliveira Fernandes, Deepti Manjari Patel, Torstein Kristensen
Abstract:
Understanding fish behavior is essential to improve animal welfare in aquaculture research. Behavioral traits can have a strong influence on fish health and habituation. To identify the genes and biological pathways responsible for lumpfish behavior, we performed an experiment to understand the interspecies relationship (mutualism) between the lumpfish and salmon. Also, we tested the correlation between the gene expression data vs. observational/physiological data to know the essential genes that trigger stress and swimming behavior in lumpfish. After the de novo assembly of the brain transcriptome, all the samples were individually mapped to the available lumpfish (Cyclopterus lumpus L.) primary genome assembly (fCycLum1.pri, GCF_009769545.1). Out of ~16749 genes expressed in brain samples, we found 267 genes to be statistically significant (P > 0.05) found only in odor and control (1), model and control (41) and salmon and control (225) groups. However, genes with |LogFC| ≥0.5 were found to be only eight; these are considered as differentially expressed genes (DEG’s). Though, we are unable to find the differential genes related to the behavioral traits from RNA-Seq data analysis. From the correlation analysis, between the gene expression data vs. observational/physiological data (serotonin (5HT), dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC), 5-hydroxy indole acetic acid (5-HIAA), Noradrenaline (NORAD)). We found 2495 genes found to be significant (P > 0.05) and among these, 1587 genes are positively correlated with the Noradrenaline (NORAD) hormone group. This suggests that Noradrenaline is triggering the change in pigmentation and skin color in lumpfish. Genes related to behavioral traits like rhythmic, locomotory, feeding, visual, pigmentation, stress, response to other organisms, taxis, dopamine synthesis and other neurotransmitter synthesis-related genes were obtained from the correlation analysis. In KEGG pathway enrichment analysis, we find important pathways, like the calcium signaling pathway and adrenergic signaling in cardiomyocytes, both involved in cell signaling, behavior, emotion, and stress. Calcium is an essential signaling molecule in the brain cells; it could affect the behavior of fish. Our results suggest that changes in calcium homeostasis and adrenergic receptor binding activity lead to changes in fish behavior during stress.Keywords: behavior, De novo, lumpfish, salmon
Procedia PDF Downloads 172