Search results for: mineral deposit safeguarding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1153

Search results for: mineral deposit safeguarding

73 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss

Procedia PDF Downloads 154
72 Effect of Germination on Nutritional Values of Isolates from Two Varieties (DAS and BS) of Under-Utilized Nigerian Cultivated Solojo Cowpea (Vigna Unguiculata L. Walp)

Authors: Henry O. Chibudike, Olubamike A. Adeyoju, Bolanle O. Oluwole, Kayode O. Adebowale, Bamidele I. Olu-Owolabi, Chinedum E. Chibudike

Abstract:

Studies on the Mineral Content of Solojo Flour and Protein Isolates from the two varieties (DAS and BS) of Nigeria cultivated solojo cowpeas were conducted to determine their nutritional value. These inorganic elements or minerals were classified into 3 categories: the ultra-trace minerals, which are the third category; the microelements, also known as the trace minerals, in the second category; while the first category is the macro elements, also known as major minerals. Some of the macro-elements are Ca, P, Na and Cl; the second category, micro-elements include iron, copper, cobalt, potassium, magnesium, iodine, zinc, manganese, molybdenum, F, Cr, Se and S. Results show that the proportion of Sodium (Na) which is ingested into the body in the form of NaCl through food intake maintenance of body pH and to retain water ranged from 728.97 to 253.37 ppm (72.90 to 25.34 mg/100 g); 715.24 to 235.45 ppm; 735.28 to 270.37 ppm; 726.59 to 264.35ppm, for FFDAS, FFBS, DAS and BS respectively with all values of the germinated samples all bellow the control. While FFDAS iron content ranged from 4.25 to 13.50 mg/100 g; FFBS ranged from 3.15 to 12.56 mg/100 g; DAS ranged from 3.81 to 12.90 mg/100g; BS ranged from 3.42 to 9.40 mg/100 g. The values of the germinated flours were all greater than the ungerminated flour. Iron helps to transport oxygen round the body and also helps in red blood cells building and to convert food into needed energy by the body. While Manganese an element that is needed in micro quantity but necessary to convert food into energy, is also crucial for healthy bone and cartilage creation. Results also show that zinc quantity increased as germination proceeded, and the values ranged from 38.80 ppm to 230.00 ppm (3.880 mg/100 g to 23.00 mg/100 g; 0.003880% to 0.0230%); 40.84 to 250.01 ppm; 32.85 to 93.41 ppm; 37.07 to 115.00 ppm, for FFDAS, FFBS, DAS and BS respectively. The Ca content improved significantly (p<0.05) with sprouting; the value extended from 250.56 ppm to 760.03 ppm (25.056 to 76.00 mg/100g or 0.0251 to 0.0760 %); 400.40 to 998.22 ppm; 116.87 to 195.69 ppm; 113.48 to 220.75 ppm, for FFDAS, FFBS, DAS and BS respectively. Zinc element although needed at the micro level in the body, is essential for a strong immune system to keep the body in good health. It is also crucial for the maintenance of a healthy sense of taste and odor, while Calcium is critical for strong bones and teeth, blood coagulation, and muscle tightening and relaxation. Magnesium is needed to build enzymes and antioxidants and also for healthy bones, while Potassium is needed to maintain water balance, muscle movement, and nerve impulses. It functions in conjunction with Na to regulate blood pressure.

Keywords: Solojo cowpea, underutilized legumes, protein isolates, BS, DAS, ungerminated

Procedia PDF Downloads 59
71 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 265
70 Calcium Biochemical Indicators in a Group of Schoolchildren with Low Socioeconomic Status from Barranquilla, Colombia

Authors: Carmiña L. Vargas-Zapata, María A. Conde-Sarmiento, Maria Consuelo Maestre-Vargas

Abstract:

Calcium is an essential element for good growth and development of the organism, and its requirement is increased at school age. Low socio-economic populations of developing countries such as Colombia may have food deficiency of this mineral in schoolchildren that could be reflected in calcium biochemical indicators, bone alterations and anthropometric indicators. The objective of this investigation was to evaluate some calcium biochemical indicators in a group of schoolchildren of low socioeconomic level from Barranquilla city and to correlate with body mass index. 60 schoolchildren aged 7 to 15 years were selected from Jesus’s Heart Educational Institution in Barranquilla-Atlántico, apparently healthy, without suffering from infectious or gastrointestinal diseases, without habits of drinking alcohol or smoking another hallucinogenic substance and without taking supplementation with calcium in the last six months or another substance that compromises bone metabolism. The research was approved by the ethics committee at Universidad del Atlántico. The selected children were invited to donate a blood and urine sample in a fasting time of 12 hours, the serum was separated by centrifugation and frozen at ˗20 ℃ until analyzed and the same was done with the urine sample. On the day of the biological collections, the weight and height of the students were measured to determine the nutritional status by BMI using the WHO tables. Calcium concentrations in serum and urine (SCa, UCa), alkaline phosphatase activity total and of bone origin (SAPT, SBAP) and urinary creatinine (UCr) were determined by spectrophotometric methods using commercial kits. Osteocalcin and Cross-linked N-telopeptides of type I collagen (NTx-1) in serum were measured with an enzyme-linked inmunosorbent assay. For statistical analysis the Statgraphics software Centurium XVII was used. 63% (n = 38) and 37% (n = 22) of the participants were male and female, respectively. 78% (n = 47), 5% (n = 3) and 17% (n = 10) had a normal, malnutrition and high nutritional status, respectively. The averages of evaluated indicators levels were (mean ± SD): 9.50 ± 1.06 mg/dL for SCa; 181.3 ± 64.3 U/L for SAPT, 143.8 ± 73.9 U/L for SBAP; 9.0 ± 3.48 ng/mL for osteocalcin and 101.3 ± 12.8 ng/mL for NTx-1. UCa level was 12.8 ± 7.7 mg/dL that adjusted with creatinine ranged from 0.005 to 0.395 mg/mg. Considering serum calcium values, approximately 7% of school children were hypocalcemic, 16% hypercalcemic and 77% normocalcemic. The indicators evaluated did not correlate with the BMI. Low values ​​were observed in calcium urinary excretion and high in NTx-1, suggesting that mechanisms such as increase in renal retention of calcium and in bone remodeling may be contributing to calcium homeostasis.

Keywords: calcium, calcium biochemical, indicators, school children, low socioeconomic status

Procedia PDF Downloads 112
69 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 179
68 The Evolution of Man through Cranial and Dental Remains: A Literature Review

Authors: Rishana Bilimoria

Abstract:

Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.

Keywords: cranio-facial, dental remains, evolution, hominids

Procedia PDF Downloads 165
67 Fluoride Contamination and Effects on Crops in North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination in water and its subsequent impact on agricultural practices is a growing concern in various regions worldwide, including North 24 Parganas, West Bengal, India. This study aimed to investigate the extent of fluoride contamination in the region's water sources and evaluate its effects on crop production and quality. A comprehensive survey of water sources, including wells, ponds, and rivers, was conducted to assess the fluoride levels in North 24 Parganas. Water samples were collected and analyzed using standard methods, and the fluoride concentration was determined. The findings revealed significant fluoride contamination in the water sources, surpassing the permissible limits recommended by national and international standards. To assess the effects of fluoride contamination on crops, field experiments were carried out in selected agricultural areas. Various crops commonly cultivated in the region, such as paddy, wheat, vegetables, and fruits, were examined for their growth, yield, and nutritional quality parameters. Additionally, soil samples were collected from the study sites to analyse the fluoride levels and their potential impact on soil health. The results demonstrated the adverse effects of fluoride contamination on crop growth and yield. Reduced plant height, stunted root development, decreased biomass accumulation, and diminished crop productivity were observed in fluoride-affected areas compared to uncontaminated control sites. Furthermore, the nutritional composition of crops, including micronutrients and mineral content, was significantly altered under high fluoride exposure, leading to potential health risks for consumers. The study also assessed the impact of fluoride on soil quality and found a negative correlation between fluoride concentration and soil health indicators, such as pH, organic matter content, and nutrient availability. These findings emphasize the need for sustainable soil management practices to mitigate the harmful effects of fluoride contamination and maintain agricultural productivity. Overall, this study highlights the alarming issue of fluoride contamination in water sources and its detrimental effects on crop production and quality in North 24 Parganas, West Bengal, India. The findings underscore the urgency for implementing appropriate water treatment measures, promoting awareness among farmers and local communities, and adopting sustainable agricultural practices to mitigate fluoride contamination and safeguard the region's agricultural ecosystem.

Keywords: agricultural ecosystem, water treatment, sustainable agricultural, fluoride contamination

Procedia PDF Downloads 80
66 Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples

Authors: Chinedu F. Anochie

Abstract:

The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established.

Keywords: comminution, degree of liberation, middlings, mine to mill

Procedia PDF Downloads 133
65 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 226
64 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 271
63 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition

Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri

Abstract:

Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.

Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation

Procedia PDF Downloads 326
62 Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)

Authors: Ling-Ling E., Hong-Chen Liu, Dong-Sheng Wang, Fang Su, Xia Wu, Zhan-Ping Shi, Yan Lv, Jia-Zhu Wang

Abstract:

Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects.

Keywords: nano-hydroxyapatite/collagen/poly (L-lactide), dental pulp stem cell, recombinant human bone morphogenetic protein, bone tissue engineering, alveolar bone

Procedia PDF Downloads 401
61 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals

Authors: Qian Li, Zhaoping Zhong

Abstract:

Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.

Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge

Procedia PDF Downloads 66
60 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 234
59 Geochemistry and Petrogenesis of High-K Calc-Alkaline Granitic Rocks of Song, Hawal Massif, N. E. Nigeria

Authors: Ismaila Haruna

Abstract:

The global downfall in fossil energy prices and dwindling oil reserves in Nigeria has ignited interest in the search for alternative sources of foreign income for the country. Solid minerals, particularly Uranium and other base metals like Lead and Zinc have been considered as potentially good options. Several occurrences of this mineral have been discovered in both the sedimentary and granitic rocks of the Hawal and Adamawa Massifs as well as in the adjoining Benue Trough in northeastern Nigeria. However, the paucity of geochemical data and consequent poor petrogenetic knowledge of the granitoids in this region has made exploration works difficult. Song, a small area within the Hawal Massif, was mapped and the collected samples chemically determined in Activation Laboratory, Canada through fusion dissolution technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Field mapping results show that the area is underlain by Granites, diorites with pockets of gneisses and pegmatites and that these rocks consists of microcline, quartz, plagioclase, biotite, hornblende, pyroxene and accessory apatite, zircon, sphene, magnetite and opaques in various proportions. Geochemical data show continous compositional variation from diorite to granites within silica range of 52.69 to 76.04 wt %. Plot of the data on various Harker variation diagrams show distinct evolutionary trends from diorites to granites indicated by decreasing CaO, Fe2O3, MnO, MgO, Ti2O, and increasing K2O with increasing silica. This pattern is reflected in trace elements data which, in general, decrease from diorite to the granites with rising Rb and K. Tectonic, triangular and other diagrams, indicate high-K calc-alkaline trends, syn-collisional granite signatures, I-type characteristics, with CNK/A of less than 1.1 (minimum of 0.58 and maximum of 0.94) and strong potassic character (K2O/Na2O˃1). However, only the granites are slightly peraluminous containing high silica percentage (68.46 to 76.04), K2O (2.71 to 6.16 wt %) with low CaO (1.88 on the average). Chondrite normalised rare earth elements trends indicate strongly fractionated REEs and enriched LREEs with slightly increasing negative Eu anomaly from the diorite to the granite. On the basis of field and geochemical data, the granitoids are interpreted to be high-K calc-alkaline, I-type, formed as a result of hybridization between mantle-derived magma and continental source materials (probably older meta-sediments) in a syn-collisional tectonic setting.

Keywords: geochemistry, granite, Hawal Massif, Nigeria, petrogenesis, song

Procedia PDF Downloads 237
58 Characterization of Himalayan Phyllite with Reference to Foliation Planes

Authors: Divyanshoo Singh, Hemant Kumar Singh, Kumar Nilankar

Abstract:

Major engineering constructions and foundations (e.g., dams, tunnels, bridges, underground caverns, etc.) in and around the Himalayan region of Uttarakhand are not only confined within hard and crystalline rocks but also stretched within weak and anisotropic rocks. While constructing within such anisotropic rocks, engineers more often encounter geotechnical complications such as structural instability, slope failure, and excessive deformation. These severities/complexities arise mainly due to inherent anisotropy such as layering/foliations, preferred mineral orientations, and geo-mechanical anisotropy present within rocks and vary when measured in different directions. Of all the inherent anisotropy present within the rocks, major geotechnical complexities mainly arise due to the inappropriate orientation of weak planes (bedding/foliation). Thus, Orientations of such weak planes highly affect the fracture patterns, failure mechanism, and strength of rocks. This has led to an improved understanding of the physico-mechanical behavior of anisotropic rocks with different orientations of weak planes. Therefore, in this study, block samples of phyllite belonging to the Chandpur Group of Lesser Himalaya were collected from the Srinagar area of Uttarakhand, India, to investigate the effect of foliation angles on physico-mechanical properties of the rock. Further, collected block samples were core drilled of diameter 50 mm at different foliation angles, β (angle between foliation plane and drilling direction), i.e., 0⁰, 30⁰, 60⁰, and 90⁰, respectively. Before the test, drilled core samples were oven-dried at 110⁰C to achieve uniformity. Physical and mechanical properties such as Seismic wave velocity, density, uniaxial compressive strength (UCS), point load strength (PLS), and Brazilian tensile strength (BTS) test were carried out on prepared core specimens. The results indicate that seismic wave velocities (P-wave and S-wave) decrease with increasing β angle. As the β angle increases, the number of foliation planes that the wave needs to pass through increases and thus causes the dissipation of wave energy with increasing β. Maximum strength for UCS, PLS, and BTS was found to be at β angle of 90⁰. However, minimum strength for UCS and BTS was found to be at β angle of 30⁰, which differs from PLS, where minimum strength was found at 0⁰ β angle. Furthermore, failure modes also correspond to the strength of the rock, showing along foliation and non-central failure as characteristics of low strength values, while multiple fractures and central failure as characteristics of high strength values. Thus, this study will provide a better understanding of the anisotropic features of phyllite for the purpose of major engineering construction and foundations within the Himalayan Region.

Keywords: anisotropic rocks, foliation angle, Physico-mechanical properties, phyllite, Himalayan region

Procedia PDF Downloads 59
57 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 34
56 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa

Authors: Parimelazhagan Thangaraj

Abstract:

Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.

Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic

Procedia PDF Downloads 332
55 Influence of the Nature of Plants on Drainage, Purification Performance and Quality of Biosolids on Faecal Sludge Planted Drying Beds in Sub-Saharan Climate Conditions

Authors: El Hadji Mamadou Sonko, Mbaye Mbéguéré, Cheikh Diop, Linda Strande

Abstract:

In new approaches that are being developed for the treatment of sludge, the valorization of by-product is increasingly encouraged. In this perspective, Echinochloa pyramidalis has been successfully tested in Cameroon. Echinochloa pyramidalis is an efficient forage plant in the treatment of faecal sludge. It provides high removal rates and biosolids of high agronomic value. Thus in order to advise the use of this plant in planted drying beds in Senegal its comparison with the plants long been used in the field deserves to be carried out. That is the aim of this study showing the influence of the nature of the plants on the drainage, the purifying performances and the quality of the biosolids. Echinochloa pyramidalis, Typha australis, and Phragmites australis are the three macrophytes used in this study. The drainage properties of the beds were monitored through the frequency of clogging, the percentage of recovered leachate and the dryness of the accumulated sludge. The development of plants was followed through the measurement of the density. The purification performances were evaluated from the incoming raw sludge flows and the outflows of leachate for parameters such as Total Solids (TS), Total Suspended Solids (TSS), Total Volatile Solids (TVS), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₄⁺), Nitrate (NO₃⁻), Total Phosphorus (TP), Orthophosphorus (PO₄³⁻) and Ascaris eggs. The quality of the biosolids accumulated on the beds was measured after 3 months of maturation for parameters such as dryness, C/N ratio NH₄⁺/NO₃⁻ ratio, ammonia, Ascaris eggs. The results have shown that the recovered leachate volume is about 40.4%; 45.6% and 47.3%; the dryness about 41.7%; 38.7% and 28.7%, and clogging frequencies about 6.7%; 8.2% and 14.2% on average for the beds planted with Echinochloa pyramidalis, Typha australis and Phragmites australis respectively. The plants of Echinochloa pyramidalis (198.6 plants/m²) and Phragmites australis (138 plants/m²) have higher densities than Typha australis (90.3 plants/m²). The nature of the plants has no influence on the purification performance with reduction percentages around 80% or more for all the parameters followed whatever the nature of the plants. However, the concentrations of these various leachate pollutants are above the limit values of the Senegalese standard NS 05-061 for the release into the environment. The biosolids harvested after 3 months of maturation are all mature with C/N ratios around 10 for all the macrophytes. The NH₄⁺/NO₃⁻ ratio is lower than 1 except for the biosolids originating from the Echinochloa pyramidalis beds. The ammonia is also less than 0.4 g/kg except for biosolids from Typha australis beds. Biosolids are also rich in mineral elements. Their concentrations of Ascaris eggs are higher than the WHO recommendations despite a percentage of inactivation around 80%. These biosolids must be stored for an additional time or composted. From these results, the use of Echinochloa pyramidalis as the main macrophyte can be recommended in the various drying beds planted in sub-Saharan climate conditions.

Keywords: faecal sludge, nature of plants, quality of biosolids, treatment performances

Procedia PDF Downloads 171
54 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 215
53 Innovative Technologies Functional Methods of Dental Research

Authors: Sergey N. Ermoliev, Margarita A. Belousova, Aida D. Goncharenko

Abstract:

Application of the diagnostic complex of highly informative functional methods (electromyography, reodentography, laser Doppler flowmetry, reoperiodontography, vital computer capillaroscopy, optical tissue oximetry, laser fluorescence diagnosis) allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment. Introduction. It is necessary to create a complex of innovative highly informative and safe functional diagnostic methods for improvement of the quality of patient treatment by the early detection of stomatologic diseases. The purpose of the present study was to investigate the etiology and pathogenesis of functional disorders identified in the pathology of hard tissue, dental pulp, periodontal, oral mucosa and chewing function, and the creation of new approaches to the diagnosis of dental diseases. Material and methods. 172 patients were examined. Density of hard tissues of the teeth and jaw bone was studied by intraoral ultrasonic densitometry (USD). Electromyographic activity of masticatory muscles was assessed by electromyography (EMG). Functional state of dental pulp vessels assessed by reodentography (RDG) and laser Doppler flowmetry (LDF). Reoperiodontography method (RPG) studied regional blood flow in the periodontal tissues. Microcirculatory vascular periodontal studied by vital computer capillaroscopy (VCC) and laser Doppler flowmetry (LDF). The metabolic level of the mucous membrane was determined by optical tissue oximetry (OTO) and laser fluorescence diagnosis (LFD). Results and discussion. The results obtained revealed changes in mineral density of hard tissues of the teeth and jaw bone, the bioelectric activity of masticatory muscles, regional blood flow and microcirculation in the dental pulp and periodontal tissues. LDF and OTO methods estimated fluctuations of saturation level and oxygen transport in microvasculature of periodontal tissues. With LFD identified changes in the concentration of enzymes (nicotinamide, flavins, lipofuscin, porphyrins) involved in metabolic processes Conclusion. Our preliminary results confirmed feasibility and safety the of intraoral ultrasound densitometry technique in the density of bone tissue of periodontium. Conclusion. Application of the diagnostic complex of above mentioned highly informative functional methods allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment.

Keywords: electromyography (EMG), reodentography (RDG), laser Doppler flowmetry (LDF), reoperiodontography method (RPG), vital computer capillaroscopy (VCC), optical tissue oximetry (OTO), laser fluorescence diagnosis (LFD)

Procedia PDF Downloads 280
52 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 435
51 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley

Authors: Kali Prasad Sarma, Sanghita Dutta

Abstract:

Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.

Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals

Procedia PDF Downloads 288
50 Applicability of Polyisobutylene-Based Polyurethane Structures in Biomedical Disciplines: Some Calcification and Protein Adsorption Studies

Authors: Nihan Nugay, Nur Cicek Kekec, Kalman Toth, Turgut Nugay, Joseph P. Kennedy

Abstract:

In recent years, polyurethane structures are paving the way for elastomer usage in biology, human medicine, and biomedical application areas. Polyurethanes having a combination of high oxidative and hydrolytic stability and excellent mechanical properties are focused due to enhancing the usage of PUs especially for implantable medical device application such as cardiac-assist. Currently, unique polyurethanes consisting of polyisobutylenes as soft segments and conventional hard segments, named as PIB-based PUs, are developed with precise NCO/OH stoichiometry (∽1.05) for obtaining PIB-based PUs with enhanced properties (i.e., tensile stress increased from ∽11 to ∽26 MPa and elongation from ∽350 to ∽500%). Static and dynamic mechanical properties were optimized by examining stress-strain graphs, self-organization and crystallinity (XRD) traces, rheological (DMA, creep) profiles and thermal (TGA, DSC) responses. Annealing procedure was applied for PIB-based PUs. Annealed PIB-based PU shows ∽26 MPa tensile strength, ∽500% elongation, and ∽77 Microshore hardness with excellent hydrolytic and oxidative stability. The surface characters of them were examined with AFM and contact angle measurements. Annealed PIB-based PU exhibits the higher segregation of individual segments and surface hydrophobicity thus annealing significantly enhances hydrolytic and oxidative stability by shielding carbamate bonds by inert PIB chains. According to improved surface and microstructure characters, greater efforts are focused on analyzing protein adsorption and calcification profiles. In biomedical applications especially for cardiological implantations, protein adsorption inclination on polymeric heart valves is undesirable hence protein adsorption from blood serum is followed by platelet adhesion and subsequent thrombus formation. The protein adsorption character of PIB-based PU examines by applying Bradford assay in fibrinogen and bovine serum albumin solutions. Like protein adsorption, calcium deposition on heart valves is very harmful because vascular calcification has been proposed activation of osteogenic mechanism in the vascular wall, loss of inhibitory factors, enhance bone turnover and irregularities in mineral metabolism. The calcium deposition on films are characterized by incubating samples in simulated body fluid solution and examining SEM images and XPS profiles. PIB-based PUs are significantly more resistant to hydrolytic-oxidative degradation, protein adsorption and calcium deposition than ElastEonTM E2A, a commercially available PDMS-based PU, widely used for biomedical applications.

Keywords: biomedical application, calcification, polyisobutylene, polyurethane, protein adsorption

Procedia PDF Downloads 257
49 Cycle-Oriented Building Components and Constructions Made from Paper Materials

Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider

Abstract:

The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.

Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources

Procedia PDF Downloads 280
48 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 114
47 Effect of Maternal Factors and C-Peptide and Insulin Levels in Cord Blood on the Birth Weight of Newborns: A Preliminary Study from Southern Sri Lanka

Authors: M. H. A. D. de Silva, R. P. Hewawasam, M. A. G. Iresha

Abstract:

Macrosomia is common in infants born to not only women diagnosed with gestational diabetes mellitus but also non-diabetic obese women. Maternal Body Mass Index (BMI) correlates with the incidence of large for gestational age infants. Obesity has reached epidemic levels in modern societies. During the past two decades, obesity in children and adolescents has risen significantly in Asian populations including Sri Lanka. There is increasing evidence to believe that infants who are born large for gestational age are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. It is also established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given BMI indicating a genetic predisposition in the occurrence of obesity. The objective of this study is to determine the effect of maternal weight, weight gain during pregnancy, c-peptide and insulin concentrations in the cord blood on the birth of appropriate for and large for gestational age infants in a tertiary care center in Southern Sri Lanka. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of insulin and C-peptide were measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured, and characteristics of the mother were collected. The relationship between insulin, C-peptide and anthropometrics were assessed by Spearman correlation. The multiple logistic regression analysis examined influences of maternal weight, weight gain during pregnancy, C-peptide and insulin concentrations in cord blood as covariates on the birth of large for gestational age infants. A significant difference (P<0.001) was observed between the insulin levels of infants born large for gestational age (18.73 ± 0.52 µlU/ml) and appropriate for gestational age (13.08 ± 0.56 µlU/ml). Consistently, A significant decrease in concentration (41.68%, P<0.001) was observed between C-peptide levels of infants born large for gestational age and appropriate for gestational age. Cord blood insulin and C-peptide levels had a significant correlation with birth weight (r=0.35, P<0.05) of the newborn at delivery. Maternal weight and BMI which are indicators of maternal nutrition were proven to be directly correlated with birth weight and length. To our knowledge, this relationship was investigated for the first time in a Sri Lankan setting and was also evident in our results. This study confirmed the fact that insulin and C-peptide play a major role in regulating fetal growth. According to the results obtained in this study, we can suggest that the increased BMI of the mother has a direct influence on increased maternal insulin secretion, which may subsequently affect cord insulin and C-peptide levels and also birth weight of the infant.

Keywords: C-peptide, insulin, large for gestational age, maternal weight

Procedia PDF Downloads 168
46 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 172
45 Development of the Food Market of the Republic of Kazakhstan in the Field of Milk Processing

Authors: Gulmira Zhakupova, Tamara Tultabayeva, Aknur Muldasheva, Assem Sagandyk

Abstract:

The development of technology and production of products with increased biological value based on the use of natural food raw materials are important tasks in the policy of the food market of the Republic of Kazakhstan. For Kazakhstan, livestock farming, in particular sheep farming, is the most ancient and developed industry and way of life. The history of the Kazakh people is largely connected with this type of agricultural production, with established traditions using dairy products from sheep's milk. Therefore, the development of new technologies from sheep’s milk remains relevant. In addition, one of the most promising areas for the development of food technology for therapeutic and prophylactic purposes is sheep milk products as a source of protein, immunoglobulins, minerals, vitamins, and other biologically active compounds. This article presents the results of research on the study of milk processing technology. The objective of the study is to study the possibilities of processing sheep milk and its role in human nutrition, as well as the results of research to improve the technology of sheep milk products. The studies were carried out on the basis of sanitary and hygienic requirements for dairy products in accordance with the following test methods. To perform microbiological analysis, we used the method for identifying Salmonella bacteria (Horizontal method for identifying, counting, and serotyping Salmonella) in a certain mass or volume of product. Nutritional value is a complex of properties of food products that meet human physiological needs for energy and basic nutrients. The protein mass fraction was determined by the Kjeldahl method. This method is based on the mineralization of a milk sample with concentrated sulfuric acid in the presence of an oxidizing agent, an inert salt - potassium sulfate, and a catalyst - copper sulfate. In this case, the amino groups of the protein are converted into ammonium sulfate dissolved in sulfuric acid. The vitamin composition was determined by HPLC. To determine the content of mineral substances in the studied samples, the method of atomic absorption spectrophotometry was used. The study identified the technological parameters of sheep milk products and determined the prospects for researching sheep milk products. Microbiological studies were used to determine the safety of the study product. According to the results of the microbiological analysis, no deviations from the norm were identified. This means high safety of the products under study. In terms of nutritional value, the resulting products are high in protein. Data on the positive content of amino acids were also obtained. The results obtained will be used in the food industry and will serve as recommendations for manufacturers.

Keywords: dairy, milk processing, nutrition, colostrum

Procedia PDF Downloads 57
44 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 461