Search results for: agroforestry system design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26579

Search results for: agroforestry system design

25499 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 167
25498 Design and Stability Analysis of Fixed Wing – VTOL UAV

Authors: Omar Eldenali, Ahmed M. Bufares

Abstract:

There are primarily two types of Unmanned Aerial Vehicle (UAVs), namely, multirotor and fixed wing. Each type has its own advantages. This study introduces a design of a fixed wing vertical take-off and landing (VTOL) UAV. The design is classified as ready-to-fly (RTF) fixed wing UAV. This means that the UAV is capable of not only taking off, landing, or hovering like a multirotor aircraft but also cruising like a fixed wing UAV. In this study, the conceptual design of 15 kg takeoff weight twin-tail boom configuration FW-VTOL plane is carried out, the initial sizing of the plane is conducted, and both the horizontal and vertical tail configurations are estimated. Moreover, the power required for each stage of flight is determined. Finally, the stability analysis of the plane based on this design is performed, the results shows that this design based on the suggested flight mission is stable and can be utilized.

Keywords: FW-VTOL, initial sizing, constrain analysis, stability

Procedia PDF Downloads 82
25497 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 160
25496 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand

Authors: Mogeeb A. El-Sheikh

Abstract:

The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.

Keywords: adaptable socket, prosthetic hand, transradial amputee, data glove

Procedia PDF Downloads 256
25495 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 321
25494 FengShui Paradigm as Philosophy of Sustainable Design

Authors: E. Erdogan, H. A. Erdogan

Abstract:

FengShui, an old Chinese discipline, dates back to more than 5000 years, is one of the design principles that aim at creating habitable and sustainable spaces in harmony with nature by systematizing data within its own structure. Having emerged from Chinese mysticism and embodying elements of faith in its principles, FengShui argues that the positive energy in the environment channels human behavior and psychology. This argument is supported with the thesis of quantum physics that ‘everything is made up of energy’ and gains an important place. In spaces where living and working take place with several principles and systematized rules, FengShui promises a happier, more peaceful and comfortable life by influencing human psychology, acts, and soul as well as the professional and social life of the individual. Observing these design properties in houses, workplaces, offices, the environment, and daily life as a design paradigm is significant. In this study, how FengShui, a Central Asian culture emanated from Chinese mysticism, shapes design and how it is used as an element of sustainable design will be explained.

Keywords: Feng Shui, design principle, sustainability, philosophy

Procedia PDF Downloads 533
25493 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter

Authors: B. Kędra, R. Małkowski

Abstract:

This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.

Keywords: power converter, Simulink Real-Time, Matlab, load, tap controller

Procedia PDF Downloads 238
25492 Analysis of Importance of Culture in Distributed Design Based on the Case Study at the University of Strathclyde

Authors: Zixuan Yang

Abstract:

This paper presents an analysis of the necessary consideration culture in distributed design through a thorough literature review and case study. The literature review has identified that the need for understanding cultural differences in product design and user evaluations is highlighted by analyzing cross-cultural influences; culture plays a significant role in distributed work, particularly in establishing team cohesion, trust, and credibility early in the project. By applying approaches of Geert Hofstede's dimensions and Fukuyama's trust analysis, a case study of a global design project, i.e., multicultural distributed teamwork solving the problem in terms of reducing the risk of deep vein thrombosis, showcases cultural dynamics, emphasizing trust-building and decision-making. The lessons learned emphasized the importance of cultural awareness, adaptability, and the utilization of scientific theories to enable effective cross-cultural collaborations in global design, providing valuable insights into navigating cultural diversity within design practices.

Keywords: culture, distributed design, global design, Geert Hofstede's dimensions, Fukuyama's trust analysis

Procedia PDF Downloads 66
25491 Principles and Practice of Therapeutic Architecture

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

The quality of life and well-being of patients, staff and visitors are central to the delivery of health care. Architecture and design are becoming an integral part of the healing and recovery approach. The most significant point that can be implemented in hospital buildings is the therapeutic value of the artificial environment, the design and integration of plants to bring the natural world into the healthcare environment. The hospital environment should feel like home comfort. The techniques that therapeutic architecture uses are very cheap, but provide real benefit to patients, staff and visitors, demonstrating that the difference is not in cost but in design quality. The best environment is not necessarily more expensive - it is about special use of light and color, rational use of materials and flexibility of premises. All this forms innovative concepts in modern hospital architecture, in new construction, renovation or expansion projects. The aim of the study is to identify the methods and principles of therapeutic architecture. The research methodology consists in studying and summarizing international experience in scientific research, literature, standards, methodological manuals and project materials on the research topic. The result of the research is the development of graphic-analytical tables based on the system analysis of the processed information; 3d visualization of hospital interiors based on processed information.

Keywords: therapeutic architecture, healthcare interiors, sustainable design, materials, color scheme, lighting, environment.

Procedia PDF Downloads 121
25490 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures

Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua

Abstract:

This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.

Keywords: acquisition, signal processing, ultrasound, SAFT, HMI

Procedia PDF Downloads 103
25489 Integration of Design Management in the Product Development Process in SME's

Authors: Vitor Carneiro, Augusto Barata Da Rocha, Barbara Rangel, Jorge Lino Alves

Abstract:

In the European Union countries, Small and Medium-Sized Enterprises (SME’s) have an important contribution to economic activity and to the Gross Domestic Product (GDP). The implementation of design practices in SME’s is often a difficult task due to resources limitations. Unlike large companies, their product development and innovation processes frequentlylack adequate planning and systematic procedures. Design management interest has grown exponentially in recent years, but as it is a recent topic there is an absence of systematic methodologies to implement design management in SME’s with little or no design experience. This work presents a contribution to improve and optimize the process of design integration and management in SME’s. A review analysis is presented to select relevant articles on the subject, review and classify the main published contributions. Based on the selected articles content it was possible to identify five main themes related to the subject under analysis: Design Function Organization, Design Management Integration, Design Management Capabilities, Managing Design Projects, and Tools and Methods. Design management is discussed from different perspectives depending on the focus on which it is placed, whether in a design or management perspective, leading to different visions and definitions: from a more upstream strand at the intersection of design and the organization's strategic management (strategic design management) to a more downstream strand related to project management and design process (design management operational). The review analysis of the selected articles allowed the identification of a high level of complexity of connections and parameters in the design management during the product development process in the context of SME’s. Within each group of the five main themes, several sub-themes, directly or indirectly related, should be considered.Sub-connections also occur between sub-themes of different themes creating a complex and intricate web of connections. This complexity of connections is often the main obstacle to conduct design management and product development efficiently. This work proposes a formulation of a systematic methodological approach to optimize the integrated project and the management and control of the product development process among SME's. The implementation of this formulation will improve the integration of design management in the product development and innovation process in SME’s.

Keywords: design management, product development, product innovation, SME’s.

Procedia PDF Downloads 218
25488 Developing Artificial Neural Networks (ANN) for Falls Detection

Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai

Abstract:

The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.

Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold

Procedia PDF Downloads 491
25487 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications

Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen

Abstract:

The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.

Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern

Procedia PDF Downloads 125
25486 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 414
25485 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 99
25484 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Baris Can Yalcin

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: design, mechatronics, motion sensor, data acquisition

Procedia PDF Downloads 581
25483 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 101
25482 Robust Image Design Based Steganographic System

Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi

Abstract:

This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).

Keywords: encryption, thresholding, differential predictive coding, four triangles operation

Procedia PDF Downloads 488
25481 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 186
25480 The Effect of Computer-Based Formative Assessment on Learning Outcome

Authors: Van Thien NGO

Abstract:

The purpose of the study is to examine the effect of student response systems in computer-based formative assessment on learning outcomes. The backward design course is a tool to be applied for collecting necessary assessment evidence. The quasi-experimental research design involves collecting pre and posttest data on students assigned to the control group and the experimental group. The sample group consists of 150 college students randomly selected from two of the eight classes of electrical and electronics students at Cao Thang Technical College in Ho Chi Minh City, Vietnam. Findings from this research revealed that the experimental group, in which student response systems were applied, got better results than the controlled group, who did not apply them. Results show that using student response systems for technology-based formative assessment is vital and meaningful not only for teachers but also for students in the teaching and learning process.

Keywords: student response system, computer-based formative assessment, learning outcome, backward design course

Procedia PDF Downloads 129
25479 The Agency of Award Systems in Architecture: The Case of Cyprus

Authors: Christakis Chatzichristou, Elias Kranos

Abstract:

Architectural awards, especially if they are given by the state, recognize excellence in the field and, at the same time, strongly contribute to the making of the architectural culture of a place. The present research looks at the houses that have been awarded through such a system in Cyprus in order to discuss the values promoted, directly or not, by such a setup which is quite similar to other prestigious award systems such as the Mies van de Rohe Prize in Europe. In fact, many of the projects signed out through the state award system end up being selected to represent the country for the European awards. The residential architecture encouraged by such systems is quite interesting in that the most public of institutions influence how the most private unit of society is architecturally accommodated. The methodology uses both qualitative as well as quantitative research tools in order to analyze: the official state call for entries to the competition; the final report of the evaluation committee; the spatial characteristics of the houses through the Space Syntax methodology; the statements of the architects regarding their intentions and the final outcome; the feelings of the owners and users of the houses regarding the design process as well as the degree of satisfaction regarding the final product. The above-mentioned analyses allow for a more thorough discussion regarding not only the values promoted explicitly by the system through the brief that describes what the evaluation committee is looking for but also the values that are actually being promoted indirectly through the results of the actual evaluation itself. The findings suggest that: the strong emphasis in brief on bioclimatic design and issues of sustainability weakens significantly, if at all present, in the actual selection process; continuous improvement seems to be fuzzily used as a concept; most of the houses tend to have a similar spatial genotype; most of the houses have similar aesthetic qualities; discrepancies between the proposed lifestyle through the design and the actual use of the spaces do not seem to be acknowledged in the evaluation as an issue; the temporal factor seems to be ignored as the projects are required to be ‘finished projects’ as though the users and their needs do not change through time. The research suggests that, rather than preserving a critical attitude regarding the role of the architect in society, the state award system tends, like any other non-reflective social organism, to simply promote its own unexamined values as well as prejudices. This is perhaps more evident in the shared aesthetic character of the awarded houses and less so in the hidden spatial genotype to which they belong. If the design of houses is indeed a great opportunity for architecture to contribute in a more deliberate manner to the evolution of society, then what the present study shows is that this opportunity seems to be largely missed. The findings may serve better less as a verdict and more as a chance for introspection and discussion.

Keywords: award systems, houses, spatial genotype, aesthetic qualities

Procedia PDF Downloads 67
25478 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control

Authors: Kadir Gök

Abstract:

In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.

Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips

Procedia PDF Downloads 89
25477 Smart Irrigation System

Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak

Abstract:

In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).

Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino

Procedia PDF Downloads 610
25476 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures

Authors: Murast Dicleli, Ali SalemMilani

Abstract:

In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.

Keywords: seismic, isolation, damper, adaptive stiffness

Procedia PDF Downloads 455
25475 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 395
25474 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles

Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong

Abstract:

A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.

Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test

Procedia PDF Downloads 397
25473 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting

Authors: Meriam Khelifa

Abstract:

In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.

Keywords: vibrations, CS TENG, efficiency, design of experiments

Procedia PDF Downloads 86
25472 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR

Procedia PDF Downloads 270
25471 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 215
25470 A Resistant-Based Comparative Study between Iranian Concrete Design Code and Some Worldwide Ones

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

The design in most counties should be inevitably carried out by their native code such as Iran. Since the Iranian concrete code does not exist in structural design software, most engineers in this country analyze the structures using commercial software but design the structural members manually. This point motivated us to make a communication between Iranian code and some other well-known ones to create facility for the engineers. Finally, this paper proposes the so-called interpretation charts which help specify the position of Iranian code in comparison of some worldwide ones.

Keywords: beam, concrete code, strength, interpretation charts

Procedia PDF Downloads 519