Search results for: adaptive deep learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9285

Search results for: adaptive deep learning

8205 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 372
8204 Influences Driving the Teachers’ Adoption of Mobile Learning

Authors: L. A. Alfarani, M. McPherson, N. Morris

Abstract:

The growth of mobile learning depends primarily on the participation of teachers and their belief in the possibilities that this technology has for enhancing learning. The need to integrate technology into education seems clear-cut, however, its acceptance in Saudi higher education remains low. Thus, determining the particular factors that affect faculty acceptance of technology is vital. This paper focuses on TAM which depends on two factors: perceived usefulness and perceived ease of use, this theory are used to predict faculty members’ behavioural intentions towards using mobile learning technology. 279 faculty members in one Saudi university have responded to the online questionnaire. The findings have revealed that there is a statistically significant difference in both usefulness and ease of using m-learning factors.

Keywords: TAM theory, mobile learning technology acceptance, usefulness, ease of use

Procedia PDF Downloads 524
8203 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 401
8202 Artificial Intelligence for Cloud Computing

Authors: Sandesh Achar

Abstract:

Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things

Procedia PDF Downloads 109
8201 Active Learning Strategies to Develop Student Skills in Information Systems for Management

Authors: Filomena Lopes, Sandra Fernandes

Abstract:

Active learning strategies are at the center of any change process aimed to improve the development of student skills. This paper aims to analyse the impact of teaching strategies, including problem-based learning (PBL), in the curricular unit of information system for management, based on students’ perceptions of how they contribute to develop the desired learning outcomes of the curricular unit. This course is part of the 1st semester and 3rd year of the graduate degree program in management at a private higher education institution in Portugal. The methodology included an online questionnaire to students (n=40). Findings from students reveal a positive impact of the teaching strategies used. In general, 35% considered that the strategies implemented in the course contributed to the development of courses’ learning objectives. Students considered PBL as the learning strategy that better contributed to enhance the courses’ learning outcomes. This conclusion brings forward the need for further reflection and discussion on the impact of student feedback on teaching and learning processes.

Keywords: higher education, active learning strategies, skills development, student assessment

Procedia PDF Downloads 61
8200 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level

Authors: Komon Paisal

Abstract:

The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.

Keywords: instructional design, pedagogical, teaching strategies, learning strategies

Procedia PDF Downloads 272
8199 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization

Authors: Hammoudi Abderazek

Abstract:

The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.

Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics

Procedia PDF Downloads 131
8198 Motivating EFL Students to Speak English through Flipped Classroom Implantation

Authors: Mohamad Abdullah

Abstract:

Recent Advancements in technology have stimulated deep change in the language learning classroom. Flipped classroom as a new pedagogical method is at the center of this change. It turns the classroom into a student-centered environment and promotes interactive and autonomous learning. The present study is an attempt to examine the effectiveness of the Flipped Classroom Model (FCM) on students’ motivation level in English speaking performance. This study was carried out with 27 undergraduate female English majors who enrolled in the course of Advanced Communication Skills (ENGL 154) at Buraimi University College (BUC). Data was collected through Motivation in English Speaking Performance Questionnaire (MESPQ) which has been distributed among the participants of this study pre and post the implementation of FCM. SPSS was used for analyzing data. The Paired T-Test which was carried out on the pre-post of (MESPQ) showed a significant difference between them (p < .009) that revealed participants’ tendency to increase their motivation level in English speaking performance after the application of FCM. In addition, respondents of the current study reported positive views about the implementation of FCM.

Keywords: english speaking performance, motivation, flipped classroom model, learner-contentedness

Procedia PDF Downloads 131
8197 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria

Authors: Abiola A. Sokoya

Abstract:

Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.

Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits

Procedia PDF Downloads 229
8196 The effect of Reflective Thinking on Iranian EFL Learners’ Language Learning Strategy Use, L2 Proficiency, and Beliefs about Second Language Learning and Teaching

Authors: Mohammad Hadi Mahmoodi, Mojtaba Farahani

Abstract:

The present study aimed at investigating whether reflective thinking differentiates Iranian EFL learners regarding language learning strategy use, beliefs about language learning and teaching, and L2 proficiency. To this end, the researcher adopted a mixed method approach. First, 94 EFL learners were asked to complete Reflective Thinking Questionnaire (Kember et al., 2000), Beliefs about Language Learning and Teaching Inventory (Horwitz, 1985), Strategy Inventory for Language Learning (Oxford, 1990), and Oxford Quick Placement Test. The results of three separate one-way ANOVAs indicated that reflective thinking significantly differentiates Iranian EFL learners concerning: (a)language learning strategy use, (b) beliefs about language learning and teaching, and (c) general language proficiency. Furthermore, to see where the differences lay, three separate post-hoc Tukey tests were run the results of which showed that learners with different levels of reflectivity (high, mid, and low) were significantly different from each other in all three dependent variables. Finally, to increase the validity of the findings thirty of the participants were interviewed and the results were analyzed through template organizing style method (Crabtree & Miller, 1999). The results of the interview analysis supported the results of quantitative data analysis.

Keywords: reflective thinking, language learning strategy use, beliefs toward language learning and teaching

Procedia PDF Downloads 656
8195 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 376
8194 Navigating the VUCA World with a Strong Heart and Mind: How to Build Passion and Character

Authors: Shynn Lim, Ching Tan

Abstract:

The paper presents the PASSION Programme designed by a government school in Singapore, guided by national goals as well as research-based pedagogies that aims to nurture students to become lifelong learners with the strength of character. The design and enactment of the integrated approach to develop in students good character, resilience and social-emotional well-being, future readiness, and active citizenship is guided by a set of principles that amalgamates Biesta’s domains of purposes of education and authentic learning. Data in terms of evidence of students’ learning and students’ feedback were collected, analysed, and suggests that the learning experience benefitted students by boosting their self-confidence, self-directed and collaborative learning skills, as well as empathy.

Keywords: lifelong learning, character and citizenship education, education and career guidance, 21CC, teaching and learning empathy

Procedia PDF Downloads 146
8193 Investigating Reading Comprehension Proficiency and Self-Efficacy among Algerian EFL Students within Collaborative Strategic Reading Approach and Attributional Feedback Intervention

Authors: Nezha Badi

Abstract:

It has been shown in the literature that Algerian university students suffer from low levels of reading comprehension proficiency, which hinder their overall proficiency in English. This low level is mainly related to the methodology of teaching reading which is employed by the teacher in the classroom (a teacher-centered environment), as well as students’ poor sense of self-efficacy to undertake reading comprehension activities. Arguably, what is needed is an approach necessary for enhancing students’ self-beliefs about their abilities to deal with different reading comprehension activities. This can be done by providing them with opportunities to take responsibility for their own learning (learners’ autonomy). As a result of learning autonomy, learners’ beliefs about their abilities to deal with certain language tasks may increase, and hence, their language learning ability. Therefore, this experimental research study attempts to assess the extent to which an integrated approach combining one particular reading approach known as ‘collaborative strategic reading’ (CSR), and teacher’s attributional feedback (on students’ reading performance and strategy use) can improve the reading comprehension skill and the sense of self-efficacy of EFL Algerian university students. It also seeks to examine students’ main reasons for their successful or unsuccessful achievements in reading comprehension activities, and whether students’ attributions for their reading comprehension outcomes can be modified after exposure to the instruction. To obtain the data, different tools including a reading comprehension test, questionnaires, an observation, an interview, and learning logs were used with 105 second year Algerian EFL university students. The sample of the study was divided into three groups; one control group (with no treatment), one experimental group (CSR group) who received a CSR instruction, and a second intervention group (CSR Plus group) who received teacher’s attribution feedback in addition to the CSR intervention. Students in the CSR Plus group received the same experiment as the CSR group using the same tools, except that they were asked to keep learning logs, for which teacher’s feedback on reading performance and strategy use was provided. The results of this study indicate that the CSR and the attributional feedback intervention was effective in improving students’ reading comprehension proficiency and sense of self-efficacy. However, there was not a significant change in students’ adaptive and maladaptive attributions for their success and failure d from the pre-test to the post-test phase. Analysis of the perception questionnaire, the interview, and the learning logs shows that students have positive perceptions about the CSR and the attributional feedback instruction. Based on the findings, this study, therefore, seeks to provide EFL teachers in general and Algerian EFL university teachers in particular with pedagogical implications on how to teach reading comprehension to their students to help them achieve well and feel more self-efficacious in reading comprehension activities, and in English language learning more generally.

Keywords: attributions, attributional feedback, collaborative strategic reading, self-efficacy

Procedia PDF Downloads 119
8192 On the Problems of Human Concept Learning within Terminological Systems

Authors: Farshad Badie

Abstract:

The central focus of this article is on the fact that knowledge is constructed from an interaction between humans’ experiences and over their conceptions of constructed concepts. Logical characterisation of ‘human inductive learning over human’s constructed concepts’ within terminological systems and providing a logical background for theorising over the Human Concept Learning Problem (HCLP) in terminological systems are the main contributions of this research. This research connects with the topics ‘human learning’, ‘epistemology’, ‘cognitive modelling’, ‘knowledge representation’ and ‘ontological reasoning’.

Keywords: human concept learning, concept construction, knowledge construction, terminological systems

Procedia PDF Downloads 325
8191 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 84
8190 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
8189 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications

Authors: H. Hruschka

Abstract:

This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.

Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models

Procedia PDF Downloads 199
8188 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 81
8187 Autonomy not Automation: Using Metacognitive Skills in ESL/EFL Classes

Authors: Marina Paula Carreira Rolim

Abstract:

In order to have ELLs take responsibility for their own learning, it is important that they develop skills to work their studies strategically. The less they rely on the instructor as the content provider, the more they become active learners and have a higher sense of self-regulation and confidence in the learning process. This e-poster proposes a new teacher-student relationship that encourages learners to reflect, think critically, and act upon their realities. It also suggests the implementation of different autonomy-supportive teaching tools, such as portfolios, written journals, problem-solving activities, and strategy-based discussions in class. These teaching tools enable ELLs to develop awareness of learning strategies, learning styles, study plans, and available learning resources as means to foster their creative power of learning outside of classroom. In the role of a learning advisor, the teacher is no longer the content provider but a facilitator that introduces skills such as ‘elaborating’, ‘planning’, ‘monitoring’, and ‘evaluating’. The teacher acts as an educator and promotes the use of lifelong metacognitive skills to develop learner autonomy in the ESL/EFL context.

Keywords: autonomy, metacognitive skills, self-regulation, learning strategies, reflection

Procedia PDF Downloads 369
8186 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 108
8185 Role of Adaptive Support Ventilation in Weaning of COPD Patients

Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi

Abstract:

Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.

Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)

Procedia PDF Downloads 390
8184 Effect of Punch and Die Profile Radii on the Maximum Drawing Force and the Total Consumed Work in Deep Drawing of a Flat Ended Cylindrical Brass

Authors: A. I. O. Zaid

Abstract:

Deep drawing is considered to be the most widely used sheet metal forming processes among the particularly in automobile and aircraft industries. It is widely used for manufacturing a large number of the body and spare parts. In its simplest form it may be defined as a secondary forming process by which a sheet metal is formed into a cylinder or alike by subjecting the sheet to compressive force through a punch with a flat end of the same geometry as the required shape of the cylinder end while it is held by a blank holder which hinders its movement but does not stop it. The punch and die profile radii play In this paper, the effects of punch and die profile radii on the autographic record, the minimum thickness strain location where the cracks normally start and cause the fracture, the maximum deep drawing force and the total consumed work in the drawing flat ended cylindrical brass cups are investigated. Five punches and five dies each having different profile radii were manufactured for this investigation. Furthermore, their effect on the quality of the drawn cups is also presented and discussed. It was found that the die profile radius has more effect on the maximum drawing force and the total consumed work than the punch profile radius.

Keywords: punch and die profile radii, deep drawing process, maximum drawing force, total consumed work, quality of produced parts, flat ended cylindrical brass cups

Procedia PDF Downloads 339
8183 A Design-Based Approach to Developing a Mobile Learning System

Authors: Martina Holenko Dlab, Natasa Hoic-Bozic, Ivica Boticki

Abstract:

This paper presents technologically innovative and scalable mobile learning solution within the SCOLLAm project (“Opening up education through Seamless and COLLAborative mobile learning on tablet computers”). The main research method applied during the development of the SCOLLAm mobile learning system is design-based research. It assumes iterative refinement of the system guided by collaboration between researches and practitioners. Following the identification of requirements, a multiplatform mobile learning system SCOLLAm [in]Form was developed. Several experiments were designed and conducted in the first and second grade of elementary school. SCOLLAm [in]Form system was used to design learning activities for math classes during which students practice calculation. System refinements were based on experience and interaction data gathered during class observations. In addition to implemented improvements, the data were used to outline possible improvements and deficiencies of the system that should be addressed in the next phase of the SCOLLAm [in]Form development.

Keywords: adaptation, collaborative learning, educational technology, mobile learning, tablet computers

Procedia PDF Downloads 272
8182 Intergenerational Technology Learning in the Family

Authors: Chih-Chun Wu

Abstract:

Learning information and communication technologies (ICT) helps people survive in current society. For the internet generation also referred as digital natives, learning new technology is like breathing; however, for the elder generations also called digital immigrants, including parents and grandparents, learning new technology could be challenged and frustrated. While majority research focused on the effects of elders’ ICT learning, less attention was paid to the help that the elders got from their other family members while learning ICT. This study utilized the anonymous questionnaire to survey 3,749 undergraduates and demonstrated that families are great places for intergenerational technology learning to be carried out. Results from this study confirmed that in the family, the younger generation both helped set up technology products and educated the elder ones needed technology knowledge and skills. The family elder members in this study applied to those who lived under the same roof with relative relations. Results from this study revealed that 2,331 (62.2%) and 2,656 (70.8%) undergraduates revealed that they helped their family elder members set up and taught them how to use LINE respectively. In addition, 1,481 (49.1%) undergraduates helped their family elder members set up, and 2,222 (59.3%) taught them. When it came to Apps, 2,527 (67.4%) helped their family elder members download them, and 2,876 (76.7%) taught how to use them. As for search engine, 2,317 (61.8%) undergraduates taught their family elders. Furthermore, 3,118 (83.2%), 2,639 (70.4%) and 2,004 (53.7%) undergraduates illustrated that they taught their family elder members smartphones, computers and tablets respectively. Meanwhile, only 904 (24.2%) undergraduates taught their family elders how to make a doctor appointment online. This study suggests to making good use of intergenerational technology learning in the family, since it increases family elders’ technology capital, and thus strengthens our country’s human capital and competitiveness.

Keywords: intergenerational technology learning, adult technology learning, family technology learning, ICT learning

Procedia PDF Downloads 235
8181 The Motivating and Demotivating Factors at the Learning of English Center in Thailand

Authors: Bella Llego

Abstract:

This study aims to investigate the motivating and de-motivating factors that affect the learning ability of students attending the English Learning Center in Thailand. The subjects of this research were 20 students from the Hana Semiconductor Co., Limited. The data were collected by using questionnaire and analyzed using the SPSS program for the percentage, mean and standard deviation. The research results show that the main motivating factor in learning English at Hana Semiconductor Co., Ltd. is that it would help the employees to communicate with foreign customers and managers. Other reasons include the need to read and write e-mails, and reports in English, as well as to increase overall general knowledge. The main de-motivating factor is that there is a lot of vocabulary to remember when learning English. Another de-motivating factor is that when homework is given, the students have no time to complete the tasks required of them at the end of the working day.

Keywords: de-motivating, English learning center, motivating, student communicate

Procedia PDF Downloads 225
8180 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study

Authors: S. Rawashdi, D. Bshouty

Abstract:

This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.

Keywords: awakeness, awareness, learning mathematics, pupils

Procedia PDF Downloads 138
8179 Sustainable Transition of Universal Design for Learning-Based Teachers’ Latent Profiles from Contact to Distance Education

Authors: Alvyra Galkienė, Ona Monkevičienė

Abstract:

The full participation of all pupils in the overall educational process is defined by the concept of inclusive education, which is gradually evolving in education policy and practice. It includes the full participation of all pupils in a shared learning experience and educational practices that address barriers to learning. Inclusive education applying the principles of Universal Design for Learning (UDL), which includes promoting students' involvement in learning processes, guaranteeing a deep understanding of the analysed phenomena, initiating self-directed learning, and using e-tools to create a barrier-free environment, is a prerequisite for the personal success of each pupil. However, the sustainability of quality education is affected by the transformation of education systems. This was particularly evident during the period of the forced transition from contact to distance education in the COVID-19 pandemic. Research Problem: The transformation of the educational environment from real to virtual one and the loss of traditional forms of educational support highlighted the need for new research, revealing the individual profiles of teachers using UDL-based learning and the pathways of sustainable transfer of successful practices to non-conventional learning environments. Research Methods: In order to identify individual latent teacher profiles that encompass the essential components of UDL-based inclusive teaching and direct leadership of students' learning, the quantitative analysis software Mplius was used for latent profile analysis (LPA). In order to reveal proven, i.e., sustainable, pathways for the transit of the components of UDL-based inclusive learning to distance learning, latent profile transit analysis (LPTA) via Mplius was used. An online self-reported questionnaire was used for data collection. It consisted of blocks of questions designed to reveal the experiences of subject teachers in contact and distance learning settings. 1432 Lithuanian, Latvian, and Estonian subject teachers took part in the survey. Research Results: The LPA analysis revealed eight latent teacher profiles with different characteristics of UDL-based inclusive education or traditional teaching in contact teaching conditions. Only 4.1% of the subject teachers had a profile characterised by a sustained UDL approach to teaching: promoting pupils' self-directed learning; empowering pupils' engagement, understanding, independent action, and expression; promoting pupils' e-inclusion; and reducing the teacher's direct supervision of the students. Other teacher profiles were characterised by limited UDL-based inclusive education either due to the lack of one or more of its components or to the predominance of direct teacher guidance. The LPTA analysis allowed us to highlight the following transit paths of teacher profiles in the extreme conditions of the transition from contact to distance education: teachers staying in the same profile of UDL-based inclusive education (sustainable transit) or jumping to other profiles (unsustainable transit in case of barriers), and teachers from other profiles moving to this profile (ongoing transit taking advantage of the changed new possibilities in the teaching process).

Keywords: distance education, latent teacher profiles, sustainable transit, UDL

Procedia PDF Downloads 101
8178 Student-Created Videos to Foster Active Learning in Heat Transfer Course

Authors: W.Appamana, S. Jantasee, P. Siwarasak, T. Mueansichai, C. Kaewbuddee

Abstract:

Heat transfer is important in chemical engineering field. We have to know how to predict rates of heat transfer in a variety of process situations. Therefore, heat transfer learning is one of the greatest challenges for undergraduate students in chemical engineering. To enhance student learning in classroom, active-learning method was proposed in a single classroom, using problems based on videos and creating video, think-pair-share and jigsaw technique. The result shows that active learning method can prevent copying of the solutions manual for students and improve average examination scores about 5% when comparing with students in traditional section. Overall, this project represents an effective type of class that motivates student-centric learning while enhancing self-motivation, creative thinking and critical analysis among students.

Keywords: active learning, student-created video, self-motivation, creative thinking

Procedia PDF Downloads 235
8177 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria

Authors: Okoh Charity N.

Abstract:

This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.

Keywords: preschooler, social learning, indoor activities, outdoor activities

Procedia PDF Downloads 130
8176 Subtitled Based-Approach for Learning Foreign Arabic Language

Authors: Elleuch Imen

Abstract:

In this paper, it propose a new approach for learning Arabic as a foreign language via audio-visual translation, particularly subtitling. The approach consists of developing video sequences appropriate to different levels of learning (from A1 to C2) containing conversations, quizzes, games and others. Each video aims to achieve a specific objective, such as the correct pronunciation of Arabic words, the correct syntactic structuring of Arabic sentences, the recognition of the morphological characteristics of terms and the semantic understanding of statements. The subtitled videos obtained can be incorporated into different Arabic second language learning tools such as Moocs, websites, platforms, etc.

Keywords: arabic foreign language, learning, audio-visuel translation, subtitled videos

Procedia PDF Downloads 61