Search results for: darrieus h type vertical axis wind turbine
8413 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics
Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang
Abstract:
A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery
Procedia PDF Downloads 1598412 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant
Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha
Abstract:
This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.Keywords: PV, oscillation, modelling, wind
Procedia PDF Downloads 378411 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves
Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis
Abstract:
During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.
Procedia PDF Downloads 818410 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 2238409 Analysis of the Contribution of Coastal and Marine Physical Factors to Oil Slick Movement: Case Study of Misrata, Libya
Authors: Abduladim Maitieg, Mark Johnson
Abstract:
Developing a coastal oil spill management plan for the Misratah coast is the motivating factor for building a database for coastal and marine systems and energy resources. Wind direction and speed, currents, bathymetry, coastal topography and offshore dynamics influence oil spill deposition in coastal water. Therefore, oceanographic and climatological data can be used to understand oil slick movement and potential oil deposits on shoreline area and the behaviour of oil spill trajectories on the sea surface. The purpose of this study is to investigate the effects of the coastal and marine physical factors under strong wave conditions and various bathymetric and coastal topography gradients in the western coastal area of Libya on the movement of oil slicks. The movement of oil slicks was computed using a GNOME simulation model based on current and wind speed/direction. The results in this paper show that (1) Oil slick might reach the Misratah shoreline area in two days in the summer and winter. Seasons. (2 ) The North coast of Misratah is the potential oil deposit area on the Misratah coast. (3) Tarball pollution was observed along the North coast of Misratah. (4) Two scenarios for the summer and the winter season were run, along the western coast of Libya . (5) The eastern coast is at a lower potential risk due to the influence of wind and current energy in the Gulf of Sidra. (6) The Misratah coastline is more vulnerable to oil spill movement in the summer than in winter seasons. (7) Oil slick takes from 2 to 5 days to reach the saltmarsh in the eastern Misratah coast. (8) Oil slick moves 300 km in 30 days from the spill resource location near the Libyan western border to the Misratah coast.(9) Bathymetric features have a profound effect on oil spill movement. (9)Oil dispersion simulations using GNOME are carried out taking into account high-resolution wind and current data.Keywords: oil spill movement, coastal and marine physical factors, coast area, Libyan
Procedia PDF Downloads 2248408 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster
Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon
Abstract:
Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil
Procedia PDF Downloads 2928407 Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis
Authors: Jeong Hwan Joo, Keun Pil Kim
Abstract:
During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression.Keywords: homolog interaction, meiotic recombination, replication protein A, RPA1
Procedia PDF Downloads 1998406 The Effect of a Probiotic Diet on htauE14 in a Rodent Model of Alzheimer’s Disease
Authors: C. Flynn, Q. Yuan, C. Reinhardt
Abstract:
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder affecting broad areas of the cerebral cortex and hippocampus. More than 95% of AD cases are representative of sporadic AD, where both genetic and environmental risk factors play a role. The main pathological features of AD include the widespread deposition of amyloid-beta and neurofibrillary tau tangles in the brain. The earliest brain pathology related to AD has been defined as hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons, characterized by Braak. However, the cause of this pathology and the ultimate progression of AD is not understood. Increasing research points to a connection between the gut microbiota and the brain, and mounting evidence has shown that there is a bidirectional interaction between the two, known as the gut-brain axis. This axis can allow for bidirectional movement of neuroinflammatory cytokines and pathogenic misfolded proteins, as seen in AD. Prebiotics and probiotics have been shown to have a beneficial effect on gut health and can strengthen the gut-barrier as well as the blood-brain barrier, preventing the spread of these pathogens across the gut-brain axis. Our laboratory has recently established a pretangle tau rat model, in which we selectively express pseudo-phosphorylated human tau (htauE14) in the LC neurons of TH-Cre rats. LC htauE14 produced pathological changes in rats resembling those of the preclinical AD pathology (reduced olfactory discrimination and LC degeneration). In this work, we will investigate the effects of pre/probiotic ingestion on AD behavioral deficits, blood inflammation/cytokines, and various brain markers in our experimental rat model of AD. Rats will be infused with an adeno-associated viral vector containing a human tau gene pseudophosphorylated at 14 sites (common in LC pretangles) into 2-3 month TH-Cre rats. Fecal and blood samples will be taken at pre-surgery, and various post-surgery time points. A collection of behavioral tests will be performed, and immunohistochemistry/western blotting techniques will be used to observe various biomarkers. This work aims to elucidate the relationship between gut health and AD progression by strengthening gut-brain relationship and aims to observe the overall effect on tau formation and tau pathology in AD brains.Keywords: alzheimer’s disease, aging, gut microbiome, neurodegeneration
Procedia PDF Downloads 1378405 Using Vertical Electrical Soundings Data to Investigate and Assess Groundwater Resources for Irrigation in the Canal Command Area
Authors: Vijaya Pradhan, S. M. Deshpande, D. G. Regulwar
Abstract:
Intense hydrogeological research has been prompted by the rising groundwater demand in typical hard rock terrain. In the current study, groundwater resources for irrigation in the canal command of the Jayakwadi Reservoir in the Indian state of Maharashtra are located using Vertical Electrical Soundings (VES). A Computer Resistivity Monitor is used to monitor the geoelectric field (CRM). Using Schlumberger setups, the investigation was carried out at seven different places in the region. Plotting of the sounding curves is the outcome of the data processing. The underlying layers and groundwater potential in the research region have been examined by analyzing these curves using curve-matching techniques, also known as partial curve matching. IPIWin2 is used to examine the relationship between resistivity and electrode spacing. The resistivity value in a geological formation is significantly reduced when groundwater is present. Up to a depth of 35 meters, the resistivity readings are minimal; beyond that, they continuously increase, suggesting a lack of water in deeper strata. As a result, the wells may only receive water up to a depth of 35 meters. In addition, the trap may occasionally fracture at deeper depths, retaining a limited amount of water in the cracks and producing a low yield. According to the findings, weathered basalt or soil make up the top layer (5–10 m), which is followed by a layer of amygdaloidal basalt (10–35 m) that is somewhat cracked and either hard basalt or compact basalt underneath.Keywords: vertical electrical soundings (VES), resistivity, electrode spacing, Schlumberger configurations, partial curve matching.
Procedia PDF Downloads 238404 Geodynamic Evolution of the Tunisian Dorsal Backland (Central Mediterranean) from the Cenozoic to Present
Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed
Abstract:
The study region is located in the Tunisian Dorsal Backland (Central Mediterranean), which is the easternmost part of the Saharan Atlas mountain range, trending southwest-northeast. Based on our fieldwork, seismic tomography images, seismicity, and previous studies, we propose an interpretation of the relationship between the surface deformation and fault kinematics in the study area and the internal dynamic processes acting in the Central Mediterranean from the Cenozoic to the present. The subduction and dynamics of internal forces beneath the complicated Maghrebides mobile belt have an impact on the Tertiary and Quaternary tectonic regimes in the Pelagian and Atlassic foreland that is part of our study region. The left lateral reactivation of the major "Tunisian N-S Axis fault" and the development of a compressional relay between the Hammamet Korbous and Messella-Ressas faults are possibly a result of tectonic stresses due to the slab roll-back following the Africa/Eurasia convergence. After the slab segmentation and its eastward migration (5–4 Ma) and the formation of the Strait of Sicily "rift zone" further east, a transtensional tectonic regime has been installed in this area. According to seismic tomography images, the STEP fault of the "North-South Axis" at Hammamet-Korbous coincides with the western edge of the "Slab windows" of the Sicilian Channel and the eastern boundary of the positive anomalies attributed to the residual Slab of Tunisia. On the other hand, significant E-W Plio-Quaternary tectonic activity may be observed along the eastern portion of this STEP fault system in the Grombalia zone as a result of recent vertical lithospheric motion in response to the lateral slab migration eastward to Sicily Channel. According to SKS fast splitting directions, the upper mantle flow pattern beneath Tunisian Dorsal is parallel to the NE-SW to E-W orientation of the Shmin identified in the study area, similar to the Plio-Quaternary extensional orientation in the Central Mediterranean. Additionally, the removal of the lithosphere and the subsequent uplift of the sub-lithospheric mantle beneath the topographic highs of the Dorsal and its surroundings may be the cause of the dominant extensional to transtensional Quaternary regime. The occurrence of strike-slip and extensional seismic events in the Pelagian block reveals that the regional transtensional tectonic regime persists today. Finally, we believe that the geodynamic history of the study area since the Cenozoic is primarily influenced by the preexisting weak zones, the African slab detachment, and the upper mantle flow pattern in the central Mediterranean.Keywords: Tunisia, lithospheric discontinuity (STEP fault), geodynamic evolution, Tunisian dorsal backland, strike-slip fault, seismic tomography, seismicity, central Mediterranean
Procedia PDF Downloads 778403 Qualitative Review of Seismic Response of Vertically Irregular Building Frames
Authors: Abdelhammid Chibane
Abstract:
This study summarizes state-of-the-art knowledge in the seismic response of vertically irregular building frames. Criteria defining vertical irregularity as per the current building codes have been discussed. A review of studies on the seismic behaviour of vertically irregular structures along with their findings has been presented. It is observed that building codes provide criteria to classify the vertically irregular structures and suggest dynamic analysis to arrive at design lateral forces. Most of the studies agree on the increase in drift demand in the tower portion of set-back structures and on the increase in seismic demand for buildings with discontinuous distributions in mass, stiffness, and strength. The largest seismic demand is found for the combined-stiffness-and-strength irregularity.Keywords: mass irregularity, set-back structure, stiffness irregularity, strength irregularity, vertical irregularity
Procedia PDF Downloads 2638402 A Study on Establishing Criteria for Installation of Small Road Signs
Authors: Sang-KeunBaik, Kyu-Soo Chong, Joon-Yeop Na
Abstract:
This study attempts to reduce the wind load of road signs, improve roadside landscaping, and enhance the safety of road users by establishing criteria for the installation of small road signs. First, we derive the minimum font size that can be used on road signs according to the road’s design speed by considering the visibility and legibility of such road signs. We classify road junctions into eight types based on junction type (intersection, interchange, and expressway) and on the number of road lanes. Furthermore, we propose small sign alternatives, to which the minimum font size is applied, to be placed by each road junction. To verify the effects of the small signs, we implemented a 3D simulation road environment, to which the small road signs were applied, and performed experiments using the driving simulator targeting 50 drivers. The experiments compared and analyzed the effects, whether the driver proceeds to the desired exit and the average driving time, between the existing large road signs and the improved small road signs under the same road conditions and intersection type. We conducted a survey with the participants of the simulation experiment on the preference between graphical signs (large road signs) and exit-centric signs (small road signs). The results show that the participants prefer the exit-centric signs (60%) to the graphical signs (40%). We propose installation criteria for small road signs for intersections, interchanges, and expressways based on the results of the experiment and the survey.Keywords: 3D simulation, driving simulator, legibility distance, minimum font size, small road signs
Procedia PDF Downloads 4768401 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD
Procedia PDF Downloads 3948400 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'
Authors: Anthony Coogan
Abstract:
Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle
Procedia PDF Downloads 1998399 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs
Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo
Abstract:
Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration
Procedia PDF Downloads 4478398 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 1968397 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas
Authors: Vijayakumar Kunche
Abstract:
Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery
Procedia PDF Downloads 2348396 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India
Authors: Tirthankar Chakraborty, Indranil Mukherjee
Abstract:
The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector
Procedia PDF Downloads 3878395 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1838394 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 1568393 Investigation of Polar Atmospheric Response to the Intense Geo-Space Activities
Authors: Jayanta K. Behera, Ashwini K. Sinha
Abstract:
The study has pointed out the relationship of energetic particle precipitation (EPP) during high speed solar wind streams (HSS) to the ionization characteristics and subsequent NOx production in the polar atmosphere. Over the last few decades, it has been shown that production of NOx in the mesosphere region during the precipitation of charged particles (with energy range >30 KeV to 1 MeV) is directly related to the ozone loss in the polar middle atmosphere, extending from mesosphere to upper stratosphere. This study has dealt with the analysis of the interplanetary parameters such as interplanetary magnetic field (IMF), solar wind velocity (Vs), charged particle density (Ns), convection field enhancement (Ec) during such HSS events and their link to the rate of production of NOx in the mesosphere. Moreover, the analysis will be used to validate or, to modify the current ion-chemistry models which describe the ionization rate and NOx production in the polar atmosphere due to EPP.Keywords: energetic particle precipitation (EPP), NOx, ozone depletion, polar vortex
Procedia PDF Downloads 4578392 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season
Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada
Abstract:
A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model
Procedia PDF Downloads 5548391 Social Information Seeking: Studying the Effect of Question Type on Responses in Social Q&A Sites
Authors: Arshia Ayoub, Zahid Ashraf Wani
Abstract:
With the introduction of online social Q&A sites, people are able to reach each other efficiently for information seeking and simultaneously creating social bonds. There prevails an issue of low or no response for some questions posed by an information seeker on these sites. So this study tries to understand the effect of question type on responses in Social Q & A sites. The study found that among the answered queries, majority of them were answered within 24 hours of posting the questions and surprisingly most replies were received within one hour of posting. It was observed that questions of general information type were most likely to be answered followed by verification type.Keywords: community‐based services, information seeking, social search, social Q&A site
Procedia PDF Downloads 1738390 Up-regulation of KRT14 Promotes EMT in Basal Muscle-invasive Bladder Cancer through IGF2BP1/FTO Dependence on Methyladenosine-modified SNAI1
Authors: Shirui Huang, Wei Chen, Chuanshu Huang
Abstract:
Basal muscle-invasive bladder cancer (BMIBC) is considered one of the subtypes of BC with the highest metastatic rate and the poorest prognosis. Therefore, elucidating the mechanisms underlying BMIBC metastasis and identifying novel precision therapeutic targets are current research hotspots and challenges to cancer researchers. Through a series of in vitro and in vivo functional experiments, we have identified the crucial role of KRT14 in the high invasiveness and adverse prognosis of BMIBC. We found that the K294 site within the IGF2BP1-KH2 domain is responsible for reading the conserved genetic information carried by D226/E227 in the KRT14 nuclear export signal (NES). Activation of the KRT14-IGF2BP1 signaling axis is essential for IGF2BP1-mediated stabilization of SNAI1 mRNA through FTO modification. Additionally, IGF2BP1 forms a positive feedback loop by stabilizing its own mRNA, thereby accelerating the invasion and metastasis of BMIBC. Collectively, our study identifies the KRT14/IGF2BP1/FTO/Snail signaling axis as an essential regulatory mechanism associated with poor prognosis in BMIBC, providing a theoretical basis for KRT14 and its downstream regulated molecules as therapeutic targets for BMIBC and the development of corresponding targeted therapies.Keywords: BMIBC, KRT4, IFGF2BP1, DNA methylation
Procedia PDF Downloads 38389 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2158388 Development of 3D Laser Scanner for Robot Navigation
Authors: Ali Emre Öztürk, Ergun Ercelebi
Abstract:
Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model
Procedia PDF Downloads 2728387 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method
Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu
Abstract:
In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization
Procedia PDF Downloads 2008386 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”
Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari
Abstract:
Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads
Procedia PDF Downloads 2978385 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 2608384 Gut-Microbiota-Brain-Axis, Leaky Gut, Leaky Brain: Pathophysiology of Second Brain Aging and Alzheimer’s Disease- A Neuroscientific Riddle
Authors: Bilal Ahmad
Abstract:
Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses. However, how Gut-microbiota plays a role in the pathogenesis of AD is not well elucidated. The purpose of this literature review is to summarize and understand the current findings that may elucidate the gut microbiota's role in the development of AD. Methods: A literature review of all the relevant papers known to the author was conducted. Relevant articles, abstracts and research papers were collected from well-accepted web sources like PubMed, PMC, and Google Scholar. Results: Recent studies have shown that Gut-microbiota has an important role in the progression of AD via Gut-Microbiota-Brain Axis. The onset of AD supports the ‘Hygiene Hypothesis’, which shows that AD might begin in the Gut, causing dysbiosis, which interferes with the intestinal barrier by releasing pro-inflammatory cytokines and making its way up to the brain via the blood-brain barrier (BBB). Molecular mechanisms lipopolysaccharides and serotonin kynurenine (tryptophan) pathways have a direct association with inflammation, the immune system, neurodegeneration, and AD. Conclusion: The studies helped to analyze the molecular basis of AD, other neurological conditions like depression, autism, and Parkinson's disease and how they are linked to Gut-microbiota. Further, studies to explore the therapeutic effects of probiotics in AD and cognitive enhancement should be warranted to provide significant clinical and practical value.Keywords: gut-microbiota, Alzheimer’s disease, second brain aging, lipopolysaccharides, short-chain fatty acids
Procedia PDF Downloads 42