Search results for: community structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11805

Search results for: community structure

1215 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid

Abstract:

Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.

Keywords: FEKO, HFSS, dual band, shorted annular ring patch

Procedia PDF Downloads 397
1214 Social Media Usage in 'No Man's Land': A Populist Paradise

Authors: Nilufer Turksoy

Abstract:

Social media tools successfully connect people from different milieu to each other. This easy access allows politicians with populist attitude to circulate any kind of political opinion or message, which will hardly appear in conventional media. Populism is a relevant concept, especially, in political communication research. In the last decade, populism in social media has been researched extensively. The present study focuses on how social media is used as a playground by Turkish Cypriot politicians to perform populism in Northern Cyprus. It aims to determine and understand the relationship between politicians and social media, and how they employ social media in their political lives. Northern Cyprus’s multi-faced character provides politicians with many possible frames and topics they can make demagogy about ongoing political deadlock, international isolation, economic instability or social and cultural life in the north part of the island. Thus, Northern Cyprus, bizarrely branded as a 'no man's land', is a case par excellence to show how politically and economically unstable geographies are inclined to perform populism. Northern Cyprus is legally invalid territory recognized by no member of the international community other than Turkey and a phantom state, just like Abkhazia and South Ossetia or Nagorno-Karabakh. Five ideological key elements of populism are employed in the theoretical framework of this study: (1) highlighting the sovereignty of the people, (2) attacking the elites, (3) advocacy for the people, (4) excluding others, and (5) invoking the heartland. A qualitative text analysis of typical Facebook posts was conducted. Profiles of popular political leaders who occupy top positions (e.g. member of parliament, minister, chairman, party secretary), who have different political views, and who use their profiles for political expression on daily bases are selected. All official Facebook pages of the selected politicians are examined during a period of five months (1 September 2017-31 January 2018). This period is selected since it was prior to the parliamentary elections. Finding revealed that majority of the Turkish Cypriot politicians use their social media profile to propagate their political ideology in a populist fashion. Populist statements are found across parties. Facebook give especially the left-wing political actors the freedom to spread their messages in manipulative ways, mostly by using a satiric, ironic and slandering jargon that refers to the pseudo-state, the phantom state, the unrecognized Turkish Republic of Northern Cyprus state. While most of the political leaders advocate for the people, invoking the heartland are preferred by right-wing politicians. A broad range of left-wing politicians predominantly conducted attack on the economic elites and ostracism of others. The finding concluded that different politicians use social media differently according to their political standpoint. Overall, the study offers a thorough analysis of populism on social media. Considering the large role social media plays in the daily life today, the finding will shed some light on the political influence of social media and the social media usage among politicians.

Keywords: Northern Cyprus, populism, politics, qualitative text analysis, social media

Procedia PDF Downloads 139
1213 Define Immersive Need Level for Optimal Adoption of Virtual Words with BIM Methodology

Authors: Simone Balin, Cecilia M. Bolognesi, Paolo Borin

Abstract:

In the construction industry, there is a large amount of data and interconnected information. To manage this information effectively, a transition to the immersive digitization of information processes is required. This transition is important to improve knowledge circulation, product quality, production sustainability and user satisfaction. However, there is currently a lack of a common definition of immersion in the construction industry, leading to misunderstandings and limiting the use of advanced immersive technologies. Furthermore, the lack of guidelines and a common vocabulary causes interested actors to abandon the virtual world after the first collaborative steps. This research aims to define the optimal use of immersive technologies in the AEC sector, particularly for collaborative processes based on the BIM methodology. Additionally, the research focuses on creating classes and levels to structure and define guidelines and a vocabulary for the use of the " Immersive Need Level." This concept, matured by recent technological advancements, aims to enable a broader application of state-of-the-art immersive technologies, avoiding misunderstandings, redundancies, or paradoxes. While the concept of "Informational Need Level" has been well clarified with the recent UNI EN 17412-1:2021 standard, when it comes to immersion, current regulations and literature only provide some hints about the technology and related equipment, leaving the procedural approach and the user's free interpretation completely unexplored. Therefore, once the necessary knowledge and information are acquired (Informational Need Level), it is possible to transition to an Immersive Need Level that involves the practical application of the acquired knowledge, exploring scenarios and solutions in a more thorough and detailed manner, with user involvement, via different immersion scales, in the design, construction or management process of a building or infrastructure. The need for information constitutes the basis for acquiring relevant knowledge and information, while the immersive need can manifest itself later, once a solid information base has been solidified, using the senses and developing immersive awareness. This new approach could solve the problem of inertia among AEC industry players in adopting and experimenting with new immersive technologies, expanding collaborative iterations and the range of available options.

Keywords: AECindustry, immersive technology (IMT), virtual reality, augmented reality, building information modeling (BIM), decision making, collaborative process, information need level, immersive level of need

Procedia PDF Downloads 92
1212 A Linguistic Analysis of the Inconsistencies in the Meaning of Some -er Suffix Morphemes

Authors: Amina Abubakar

Abstract:

English like any other language is rich by means of arbitrary, conventional, symbols which lend it to lot of inconsistencies in spelling, phonology, syntax, and morphology. The research examines the irregularities prevalent in the structure and meaning of some ‘er’ lexical items in English and its implication to vocabulary acquisition. It centers its investigation on the derivational suffix ‘er’, which changes the grammatical category of word. English language poses many challenges to Second Language Learners because of its irregularities, exceptions, and rules. One of the meaning of –er derivational suffix is someone or somebody who does something. This rule often confuses the learners when they meet with the exceptions in normal discourse. The need to investigate instances of such inconsistencies in the formation of –er words and the meanings given to such words by the students motivated this study. For this purpose, some senior secondary two (SS2) students in six randomly selected schools in the metropolis were provided a large number of alphabetically selected ‘er’ suffix ending words, The researcher opts for a test technique, which requires them to provide the meaning of the selected words with- er. The marking of the test was scored on the scale of 1-0, where correct formation of –er word and meaning is scored one while wrong formation and meaning is scored zero. The number of wrong and correct formations of –er words meaning were calculated using percentage. The result of this research shows that a large number of students made wrong generalization of the meaning of the selected -er ending words. This shows how enormous the inconsistencies are in English language and how are affect the learning of English. Findings from the study revealed that though students mastered the basic morphological rules but the errors are generally committed on those vocabulary items that are not frequently in use. The study arrives at this conclusion from the survey of their textbook and their spoken activities. Therefore, the researcher recommends that there should be effective reappraisal of language teaching through implementation of the designed curriculum to reflect on modern strategies of teaching language, identification, and incorporation of the exceptions in rigorous communicative activities in language teaching, language course books and tutorials, training and retraining of teachers on the strategies that conform to the new pedagogy.

Keywords: ESL(English as a second language), derivational morpheme, inflectional morpheme, suffixes

Procedia PDF Downloads 376
1211 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 109
1210 Effect of Texturised Soy Protein and Yeast on the Instrumental and Sensory Quality of Hybrid Beef Meatballs

Authors: Simona Grasso, Gabrielle Smith, Sophie Bowers, Oluseyi Moses Ajayi, Mark Swainson

Abstract:

Hybrid meat analogues are meat products whereby a proportion of meat has been partially replaced by more sustainable protein sources. These products could bridge the gap between meat and meat-free products, providing convenience, and allowing consumers to continue using meat products as they conventionally would, while lowering their overall meat intake. The study aimed to investigate the effect of introducing texturized soy protein (TSP) at different levels (15% and 30%) with and without nutritional yeast as flavour enhancer on the sensory and instrumental quality of beef meatballs, compared to a soy and yeast-free control. Proximate analysis, yield, colour, instrumental texture, and sensory quality were investigated. The addition of soy and yeast did not have significant effects on the overall protein content, but the total fat and moisture content went down with increasing soy substitution. Samples with 30% TSP had significantly higher yield than the other recipes. In terms of colour, a* redness values tended to go down and b* yellowness values tended to go up with increasing soy addition. The addition of increasing levels of soy and yeast modified the structure of meatballs resulting in a progressive decrease in hardness and chewiness compared to control. Sixty participants assessed the samples using Check-all-that-apply (CATA) questions and hedonic scales. The texture of all TSP-containing samples received significantly higher acceptability scores than control, while 15% TSP with yeast received significantly higher flavour and overall acceptability scores than control. Control samples were significantly more often associated than the other recipes to the term 'hard' and the least associated to 'soft' and 'crumbly and easy to cut'. All recipes were similarly associated to the terms 'weak meaty', 'strong meaty', 'characteristic' and 'unusual'. Correspondence analysis separated the meatballs in three distinct groups: 1) control; 2) 30%TSP with yeast; and 3) 15%TSP, 15%TSP with yeast and 30%TSP located together on the sensory map, showing similarity. Adding 15-30% TSP with or without yeast inclusion could be beneficial for the development of future meat hybrids with acceptable sensory quality. These results can provide encouragement for the use of the hybrid concept by the meat industry to promote the partial substitution of meat in flexitarians’ diets.

Keywords: CATA, hybrid meat products, texturised soy protein, yeast

Procedia PDF Downloads 162
1209 Rural Population Participation in Minsu Industry as the Method for Rural Revitalization in China

Authors: Xiaoxin Zhao

Abstract:

Because of the long-time dual structure development in urban and rural areas, the rapid urbanization in China devours the rural resources and causes the unbalanced development of cities and the countryside. On one side, the urban sprawl is swallowing the villages in the peripheral area of cities and forms the ‘urban village’. On the other side, people from traditional and vernacular villages immigrate to the metropolis that their homeland becomes the ‘hollowed village’. In 2005, the national state council noticed the significance of rural development and promoted the ‘beautiful countryside’ project when Minsu was rising. In the 19th National Congress of the Communist Party of China (2017), president Xi Jinping announces the importance of ‘rural revitalization’ and states that the relationship between urban and rural areas should be an integrated development model. However, most Minsu projects in China was invested and managed by individual or group investors and focused on the profits but not the vernacular culture and rural development, and enhanced the urban-rural distinction. This paper introduces two Minsu projects in China designed by star-architects and advertised by social network media as case studies through photos and public comments collections. Architects as the servant to the investors, designed fancy houses, brings the urban life mode but expelled the real vernacular lifestyle as a cultural experience in rural areas. Moreover, to advertise the Minsu hotel, the social media propagates a distorted value that ‘luxury is good taste’ and motivates the vanity of people. Lastly, to maximize the profits, the investors set a high price that caused another unbalanced development in rural area since the price for one night in the Minsu hotel may exceed the monthly income of a local inhabitant. With these material, the author discusses the problems in Chinese Minsu industry and argues that the media, architects and investors play the negative role in the separation between Minsu cultural tourism and rural population. As a result, the author points out the significance of rural population participation that sharing the profits with them if we take Minsu industry as a method for rural revitalization in China.

Keywords: Minsu, vernacular, rural development, rural population participation

Procedia PDF Downloads 256
1208 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 94
1207 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 309
1206 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities

Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad

Abstract:

Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.

Keywords: submerged structures, groin, shore protective structures, coastal cities

Procedia PDF Downloads 314
1205 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 80
1204 Nanotechnology for Flame Retardancy of Thermoset Resins

Authors: Ewa Kicko Walczak, Grazyna Rymarz

Abstract:

In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.

Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins

Procedia PDF Downloads 281
1203 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.

Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI

Procedia PDF Downloads 46
1202 The Scientific Phenomenon Revealed in the Holy Quran - an Update

Authors: Arjumand Warsy

Abstract:

The Holy Quran was revealed to Prophet Mohammad (May Peace and Blessings of Allah be upon Him) over fourteen hundred years ago, at a time when majority of the people in Arabia were illiterate and very few could read or write. Any knowledge about medicine, anatomy, biology, astronomy, physics, geology, geophysics or other sciences were almost non-existent. Many superstitious and groundless believes were prevalent and these believes were passed down through past generations. At that time, the Holy Quran was revealed and it presented several phenomenon that have been only currently unveiled, as scientists have worked endlessly to provide explanation for these physical and biological phenomenon applying scientific technologies. Many important discoveries were made during the 20th century and it is interesting to note that many of these discoveries were already present in the Holy Quran fourteen hundred years ago. The Scientific phenomenon, mentioned in the Holy Quran, cover many different fields in biological and physical sciences and have been the source of guidance for a number of scientists. A perfect description of the creation of the universe, the orbits in space, the development process, development of hearing process prior to sight, importance of the skin in sensing pain, uniqueness of fingerprints, role of males in selection of the sex of the baby, are just a few of the many facts present in the Quran that have astonished many scientists. The Quran in Chapter 20, verse 50 states: قَالَ رَبُّنَا الَّذِيۤ اَعْطٰى كُلَّ شَيْءٍ خَلْقَهٗ ثُمَّ هَدٰى ۰۰ (He said "Our Lord is He, Who has given a distinctive form to everything and then guided it aright”). Explaining this brief statement in the light of the modern day Molecular Genetics unveils the entire genetic basis of life and how guidance is stored in the genetic material (DNA) present in the nucleus. This thread like structure, made of only six molecules (sugar, phosphate, adenine, thymine, cytosine and guanine), is so brilliantly structured by the Creator that it holds all the information about each and every living thing, whether it is viruses, bacteria, fungi, plants, animals or humans or any other living being. This paper will present an update on some of the physical and biological phenomena’ presented in the Holy Quran, unveiled using advanced technologies during the last century and will discuss how the need to incorporate this information in the curricula.

Keywords: The Holy Quran, scientific facts, curriculum, Muslims

Procedia PDF Downloads 350
1201 Gender Equity in Everyday Lives: A Case Study from New Delhi, India

Authors: Shrutika Lakshmi

Abstract:

Gender inequality has been quite evident particularly in the third world economies in different domains like health, education, marriages and personal freedom. Women’s exercise to personal freedom is driven by their financial standing in third world social milieu. However, even after decades of attempt to achieve a socio-economic standing equal to men, their attempts have failed in registering success.This research has been conducted in the national capital of India New Delhi aiming to reflect upon the gendered relations in society on the category of employed women. This particular category of women have been chosen for the study in order to study the gender relations, subordination of such women in household despite having an economic standing of their own, etc. The methodology used for this study is semi-structured interview along with qualitative analysis. Moreover, with the help of direct interaction with these women, we get insight into the kind of gendered relations prevailing inside the household structure which have their roots in age old customs and stereotype of the social milieu. Most importantly, the highlight of the study remains on the point where the hierarchy remains in the subconscious of these women and they never forget their social standing. It has been interesting to note that how even after contributing to the family income successively, their position remains subjugated in front of their male counterparts and thus, they are not ‘free’ in the real sense of the term. Even after attaining an economically stable position, these women did not enjoy the same comfort and freedom of choice as their male counterparts do, this could be gauged from the fact that when asked about ‘time for one’s own self’ they had no sense of it. This is astonishing in today’s world where every individual works and strives for a better livelihood and quality existence. Such findings reflect upon the reality of our society where women are still subjugated and duty bound towards the household even after having the same economic stand as their male counterparts. The burden of household chores and responsibilities fall solely on the shoulders of a women despite being an employed women even in the present times. Cooperation comes primarily from female members of the household and not from males. And thus, we as a society are far away from gender equity. We still suffer from prejudices and stereotypes which prevent us from giving same respect to women which we keep reserved for the man. Given this scenario, it seems, gender equity is a distant goal which we will have to keep striving for even harder even after decades of feminist struggles all over the world.

Keywords: employed women, subjugation in household, gender hierarchy, financial independence,

Procedia PDF Downloads 154
1200 Preliminary Studies of Antibiofouling Properties in Wrinkled Hydrogel Surfaces

Authors: Mauricio A. Sarabia-Vallejos, Carmen M. Gonzalez-Henriquez, Adolfo Del Campo-Garcia, Aitzibier L. Cortajarena, Juan Rodriguez-Hernandez

Abstract:

In this study, it was explored the formation and the morphological differences between wrinkled hydrogel patterns obtained via generation of surface instabilities. The slight variations in the polymerization conditions produce important changes in the material composition and pattern structuration. The compounds were synthesized using three main components, i.e. an amphiphilic monomer, hydroxyethyl methacrylate (HEMA), a hydrophobic monomer, trifluoroethyl methacrylate (TFMA), and a hydrophilic crosslinking agent, poly(ethylene glycol) diacrylate (PEGDA). The first part of this study was related to the formation of wrinkled surfaces using only HEMA and PEGDA and varying the amount of water added in the reaction. The second part of this study involves the gradual insertion of TFMA into the hydrophilic reaction mixture. Interestingly, the manipulation of the chemical composition of this hydrogel affects both surface morphology and physicochemical characteristics of the patterns, inducing transitions from one particular type of structure (wrinkles or ripples) to different ones (creases, folds, and crumples). Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability of the samples, remaining however highly hydrophilic (contact angle below 45°). More interestingly, by using confocal Raman spectroscopy, important information about the wrinkle formation mechanism is obtained. The procedure involving two consecutive thermal and photopolymerization steps lead to a “pseudo” two-layer system. Thus, upon photopolymerization, the surface is crosslinked to a higher extent than the bulk and water evaporation drives the formation of wrinkled surfaces. Finally, cellular, and bacterial proliferation studies were performed to the samples, showing that the amount of TFMA included in each sample slightly affects the proliferation of both (bacteria and cells), but in the case of bacteria, the morphology of the sample also plays an important role, importantly reducing the bacterial proliferation.

Keywords: antibiofouling properties, hydrophobic/hydrophilic balance, morphologic characterization, wrinkled hydrogel patterns

Procedia PDF Downloads 157
1199 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 321
1198 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis

Authors: H. Li, L. Ji, J. Su

Abstract:

Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.

Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment

Procedia PDF Downloads 150
1197 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 86
1196 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia

Authors: Ching-Yu Liao, Ju-Joan Wong

Abstract:

Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.

Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology

Procedia PDF Downloads 23
1195 Human Behavioral Assessment to Derive Land-Use for Sustenance of River in India

Authors: Juhi Sah

Abstract:

Habitat is characterized by the inter-dependency of environmental elements. Anthropocentric development approach is increasing our vulnerability towards natural hazards. Hence, manmade interventions should have a higher level of sensitivity towards the natural settings. Sensitivity towards the environment can be assessed by the behavior of the stakeholders involved. This led to the establishment of a hypothesis: there exists a legitimate relationship between the behavioral sciences, land use evolution and environment conservation, in the planning process. An attempt has been made to establish this relationship by reviewing the existing set of knowledge and case examples pertaining to the three disciplines under inquiry. Understanding the scarce & deteriorating nature of fresh-water reserves of earth and experimenting the above concept, a case study of a growing urban center's river flood plain is selected, in a developing economy, India. Cases of urban flooding in Chennai, Delhi and other mega cities of India, imposes a high risk on the unauthorized settlement, on the floodplains of the rivers. The issue addressed here is the encroachment of floodplains, through psychological enlightenment and modification through knowledge building. The reaction of an individual or society can be compared to a cognitive process. This study documents all the stakeholders' behavior and perception for their immediate natural environment (water body), and produce various land uses suitable along a river in an urban settlement as per different stakeholder's perceptions. To assess and induce morally responsible behavior in a community (small scale or large scale), tools of psychological inquiry is used for qualitative analysis. The analysis will deal with varied data sets from two sectors namely: River and its geology, Land use planning and regulation. Identification of a distinctive pattern in the built up growth, river ecology degradation, and human behavior, by handling large quantum of data from the diverse sector and comments on the availability of relevant data and its implications, has been done. Along the whole river stretch, condition and usage of its bank vary, hence stakeholder specific survey questionnaires have been prepared to accurately map the responses and habits of the rational inhabitants. A conceptual framework has been designed to move forward with the empirical analysis. The classical principle of virtues says "virtue of a human depends on its character" but another concept defines that the behavior or response is a derivative of situations and to bring about a behavioral change one needs to introduce a disruption in the situation/environment. Owing to the present trends, blindly following the results of data analytics and using it to construct policy, is not proving to be in favor of planned development and natural resource conservation. Thus behavioral assessment of the rational inhabitants of the planet is also required, as their activities and interests have a large impact on the earth's pre-set systems and its sustenance.

Keywords: behavioral assessment, flood plain encroachment, land use planning, river sustenance

Procedia PDF Downloads 116
1194 A Taxonomy of Professional Engineering Attributes for Tackling Global Humanitarian Challenges

Authors: Georgia Kremmyda, Angelos Georgoulas, Yiannis Koumpouros, James T. Mottram

Abstract:

There is a growing interest in enhancing the creativity and problem-solving ability of engineering students by expanding their engagement to complex, interdisciplinary problems such as environmental issues, resilience to man-made and natural disasters, global health matters, water needs, increased energy demands, and other global humanitarian challenges. Tackling societal challenges requires knowledgeable and erudite engineers who can handle, combine, transform and create innovative, affordable and sustainable solutions. This view simultaneously complements and challenges current conceptions of an emerging educational movement that, almost without exception, are underpinned by calls for competitive economic growth and technological development. This article reveals a taxonomy of humanitarian attributes to be enabled to professional engineers, through reformed curricula and innovative pedagogies, which once implemented and integrated efficiently in higher engineering education, they will provide students and educators with opportunities to explore interdependencies and connections between resources, sustainable design, societal needs, and the natural environment and to critically engage with implicit and explicit facets of disciplinary identity. The research involves carrying out a study on (a) current practices, best practices and barriers in knowledge organisation, content, and hierarchy in graduate engineering programmes, (b) best practices associated with teaching and research in engineering education around the world, (c) opportunities inherent in general reforms of graduate engineering education and inherent in integrating the humanitarian context throughout engineering education programmes, and, (d) an overarching taxonomy of professional attributes for tackling humanitarian challenges. Research methods involve state-of-the-art literature review on engineering education and pedagogy to resource thematic findings on current status in engineering education worldwide, and qualitative research through three practice dialogue workshops, run in Asia (Vietnam, Indonesia and Bangladesh) involving a variety of national, international and local stakeholders (industries; NGOs, governmental organisations). Findings from this study provide evidence on: (a) what are the professional engineering attributes (skills, experience, knowledge) needed for tackling humanitarian challenges; (b) how we can integrate other disciplines and professions to engineering while defining the professional attributes of engineers who are capable of tackling humanitarian challenges. The attributes will be linked to those discipline(s) and profession(s) that are more likely to enforce the attributes (removing the assumption that engineering education as it stands at the moment can provide all attributes), and; (c) how these attributes shall be supplied; what kind of pedagogies or training shall take place beyond current practices. Acknowledgment: The study is currently in progress and is being undertaken in the framework of the project ENHANCE - ENabling Humanitarian Attributes for Nurturing Community-based Engineering (project No: 598502-EEP-1-2018-1-UK-EPPKA2-CBHE-JP (2018-2582/001-001), funded by the Erasmus + KA2 Cooperation for innovation and the exchange of good practices – Capacity building in the field of Higher Education.

Keywords: professional engineering attributes, engineering education, taxonomy, humanitarian challenges, humanitarian engineering

Procedia PDF Downloads 188
1193 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya

Abstract:

The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.

Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella

Procedia PDF Downloads 66
1192 Biofuels from Hybrid Poplar: Using Biochemicals and Wastewater Treatment as Opportunities for Early Adoption

Authors: Kevin W. Zobrist, Patricia A. Townsend, Nora M. Haider

Abstract:

Advanced Hardwood Biofuels Northwest (AHB) is a consortium funded by the United States Department of Agriculture (USDA) to research the potential for a system to produce advanced biofuels (jet fuel, diesel, and gasoline) from hybrid poplar in the Pacific Northwest region of the U.S. An Extension team was established as part of the project to examine community readiness and willingness to adopt hybrid as a purpose-grown bioenergy crop. The Extension team surveyed key stakeholder groups, including growers, Extension professionals, policy makers, and environmental groups, to examine attitudes and concerns about growing hybrid poplar for biofuels. The surveys found broad skepticism about the viability of such a system. The top concern for most stakeholder groups was economic viability and the availability of predictable markets. Growers had additional concerns stemming from negative past experience with hybrid poplar as an unprofitable endeavor for pulp and paper production. Additional barriers identified included overall land availability and the availability of water and water rights for irrigation in dry areas of the region. Since the beginning of the project, oil and natural gas prices have plummeted due to rapid increases in domestic production. This has exacerbated the problem with economic viability by making biofuels even less competitive than fossil fuels. However, the AHB project has identified intermediate market opportunities to use poplar as a renewable source for other biochemicals produced by petroleum refineries, such as acetic acid, ethyl acetate, ethanol, and ethylene. These chemicals can be produced at a lower cost with higher yields and higher, more-stable prices. Despite these promising market opportunities, the survey results suggest that it will still be challenging to induce growers to adopt hybrid poplar. Early adopters will be needed to establish an initial feedstock supply for a budding industry. Through demonstration sites and outreach events to various stakeholder groups, the project attracted interest from wastewater treatment facilities, since these facilities are already growing hybrid poplar plantations for applying biosolids and treated wastewater for further purification, clarification, and nutrient control through hybrid poplar’s phytoremediation capabilities. Since these facilities are already using hybrid poplar, selling the wood as feedstock for a biorefinery would be an added bonus rather than something requiring a high rate of return to compete with other crops and land uses. By holding regional workshops and conferences with wastewater professionals, AHB Extension has found strong interest from wastewater treatment operators. In conclusion, there are several significant barriers to developing a successful system for producing biofuels from hybrid poplar, with the largest barrier being economic viability. However, there is potential for wastewater treatment facilities to serve as early adopters for hybrid poplar production for intermediate biochemicals and eventually biofuels.

Keywords: hybrid poplar, biofuels, biochemicals, wastewater treatment

Procedia PDF Downloads 263
1191 Numerical Study of Piled Raft Foundation Under Vertical Static and Seismic Loads

Authors: Hamid Oumer Seid

Abstract:

Piled raft foundation (PRF) is a union of pile and raft working together through the interaction of soil-pile, pile-raft, soil-raft and pile-pile to provide adequate bearing capacity and controlled settlement. A uniform pile positioning is used in PRF; however, there is a wide room for optimization through parametric study under vertical load to result in a safer and economical foundation. Addis Ababa is found in seismic zone 3 with a peak ground acceleration (PGA) above the threshold of damage, which makes investigating the performance of PRF under seismic load considering the dynamic kinematic soil structure interaction (SSI) vital. The study area is located in Addis Ababa around Mexico (commercial bank) and Kirkos (Nib, Zemen and United Bank) in which input parameters (pile length, pile diameter, pile spacing, raft area, raft thickness and load) are taken. A finite difference-based numerical software, FLAC3D V6, was used for the analysis. The Kobe (1995) and Northridge (1994) earthquakes were selected, and deconvolution analysis was done. A close load sharing between pile and raft was achieved at a spacing of 7D with different pile lengths and diameters. The maximum settlement reduction achieved is 9% for a pile of 2m diameter by increasing length from 10m to 20m, which shows pile length is not effective in reducing settlement. The installation of piles results in an increase in the negative bending moment of the raft compared with an unpiled raft. Hence, the optimized design depends on pile spacing and the raft edge length, while pile length and diameter are not significant parameters. An optimized piled raft configuration (𝐴𝐺/𝐴𝑅 = 0.25 at the center and piles provided around the edge) has reduced pile number by 40% and differential settlement by 95%. The dynamic analysis shows acceleration plot at the top of the piled raft has PGA of 0.25𝑚2/𝑠𝑒𝑐 and 0.63𝑚2/𝑠𝑒𝑐 for Northridge (1994) and Kobe (1995) earthquakes, respectively, due to attenuation of seismic waves. Pile head displacement (maximum is 2mm, and it is under the allowable limit) is affected by the PGA rather than the duration of an earthquake. End bearing and friction PRF performed similarly under two different earthquakes except for their vertical settlement considering SSI. Hence, PRF has shown adequate resistance to seismic loads.

Keywords: FLAC3D V6, earthquake, optimized piled raft foundation, pile head department

Procedia PDF Downloads 22
1190 Ant-Tracking Attribute: A Model for Understanding Production Response

Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo

Abstract:

Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.

Keywords: seismic, attributes, production, structural

Procedia PDF Downloads 63
1189 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 210
1188 Investigation of Dry-Blanching and Freezing Methods of Fruits

Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné

Abstract:

Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.

Keywords: blanching, freezing, fruits, microwave blanching, microwave

Procedia PDF Downloads 264
1187 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet

Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez

Abstract:

Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.

Keywords: plastic deformation, strain, sheet drawing, magnesium

Procedia PDF Downloads 107
1186 Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals

Authors: Sophio Kobauri, David Tugushi, Vladimir P. Torchilin, Ramaz Katsarava

Abstract:

Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals.

Keywords: amino acid – L-phenylalanine, pseudo-proteins, amphiphilic block-copolymers, biodegradable micelles

Procedia PDF Downloads 133