Search results for: optimal location
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5151

Search results for: optimal location

4131 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 285
4130 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy

Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt

Abstract:

Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.

Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles

Procedia PDF Downloads 215
4129 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: input performance, mobile device, slim keyboard, tactile feedback

Procedia PDF Downloads 299
4128 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: circular arc helical gear, contact problem, optimal center distance, piezoelectric sheet, power generation

Procedia PDF Downloads 167
4127 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60
4126 Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries

Authors: E. K. Hardwick, L. B. Siwela, J. G. Falconer, M. E. Mathibela, W. Rolfe

Abstract:

Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange.

Keywords: cobalt, ion exchange, leachate formation, lithium-ion batteries, manganese, nickel

Procedia PDF Downloads 98
4125 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 377
4124 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 65
4123 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 141
4122 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 419
4121 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: air bubbles, CFD simulation, jet pump, applications

Procedia PDF Downloads 243
4120 Sustainability Assessment Tool for the Selection of Optimal Site Remediation Technologies for Contaminated Gasoline Sites

Authors: Connor Dunlop, Bassim Abbassi, Richard G. Zytner

Abstract:

Life cycle assessment (LCA) is a powerful tool established by the International Organization for Standardization (ISO) that can be used to assess the environmental impacts of a product or process from cradle to grave. Many studies utilize the LCA methodology within the site remediation field to compare various decontamination methods, including bioremediation, soil vapor extraction or excavation, and off-site disposal. However, with the authors' best knowledge, limited information is available in the literature on a sustainability tool that could be used to help with the selection of the optimal remediation technology. This tool, based on the LCA methodology, would consider site conditions like environmental, economic, and social impacts. Accordingly, this project was undertaken to develop a tool to assist with the selection of optimal sustainable technology. Developing a proper tool requires a large amount of data. As such, data was collected from previous LCA studies looking at site remediation technologies. This step identified knowledge gaps or limitations within project data. Next, utilizing the data obtained from the literature review and other organizations, an extensive LCA study is being completed following the ISO 14040 requirements. Initial technologies being compared include bioremediation, excavation with off-site disposal, and a no-remediation option for a generic gasoline-contaminated site. To complete the LCA study, the modelling software SimaPro is being utilized. A sensitivity analysis of the LCA results will also be incorporated to evaluate the impact on the overall results. Finally, the economic and social impacts associated with each option will then be reviewed to understand how they fluctuate at different sites. All the results will then be summarized, and an interactive tool using Excel will be developed to help select the best sustainable site remediation technology. Preliminary LCA results show improved sustainability for the decontamination of a gasoline-contaminated site for each technology compared to the no-remediation option. Sensitivity analyses are now being completed on on-site parameters to determine how the environmental impacts fluctuate at other contaminated gasoline locations as the parameters vary, including soil type and transportation distances. Additionally, the social improvements and overall economic costs associated with each technology are being reviewed. Utilizing these results, the sustainability tool created to assist in the selection of the overall best option will be refined.

Keywords: life cycle assessment, site remediation, sustainability tool, contaminated sites

Procedia PDF Downloads 58
4119 Urban Retrofitting Application Based on Social-Media to Model the Malioboro Smart Central Business Design through Statistical Regression Approach

Authors: Muhammad Hardyan Prastyanto, Aisah Azhari Marwangi, Yulinda Rizky Pratiwi

Abstract:

Globalization has become a driving force for the current technological developments. The presence of the Virtual Space provides opportunities for people to self-actualization through access to a wider world, quickly and easily. Cities that are part of the existence of life, witness the history of civilization over time, also has been the major object to upgrading on technological sector. A smart city is one where the government and citizenry are using the best available means, including ICT, to achieve their shared goals. This often includes economic development, environmental sustainability, and improved quality of life for citizens. Thus theory is the basis for research of this study. This study aimed to know the implementation of the Urban Retrofitting at Malioboro area based on Information and Communication Technologies. The method of this study is by reviewing the effectiveness of the E-commerce uses as a major system to identification the Malioboro Smart Central Business District. By using a significance level of 5 %, it can be concluded that addresses have a significant influence on the ratings obtained, namely regarding the location of the hotel establishment. But despite the use of the website does not have a significant influence on the rating of the hotel, using the website still has influence significantly on the rating, because the p -value (Sig.) of the variable website is not so much different from the significance level determined by the researcher. In the interpretation, if a hotel is located on the Pasar Kembang streets and not to use the website, so the hotel is likely to have a rating of the constant value which is 3.183. However, if a hotel located on the Sosrowijayan streets, so the hotel rating will be increased by 0,302. Then if a hotel has been using a website, so the hotel rating will increase by 0,264. It is possible to conclude the effectiveness of ICT’s (Website) uses and location to identification the urban retrofitting through increasing of building rating in Malioboro Central Business District.

Keywords: urban retrofitting, e-commerce, information and communication technology, statistic regression, SCBD, Malioboro

Procedia PDF Downloads 300
4118 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE

Procedia PDF Downloads 76
4117 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology

Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji

Abstract:

Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.

Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric

Procedia PDF Downloads 72
4116 Cross-Country Mitigation Policies and Cross Border Emission Taxes

Authors: Massimo Ferrari, Maria Sole Pagliari

Abstract:

Pollution is a classic example of economic externality: agents who produce it do not face direct costs from emissions. Therefore, there are no direct economic incentives for reducing pollution. One way to address this market failure would be directly taxing emissions. However, because emissions are global, governments might as well find it optimal to wait let foreign countries to tax emissions so that they can enjoy the benefits of lower pollution without facing its direct costs. In this paper, we first document the empirical relation between pollution and economic output with static and dynamic regression methods. We show that there is a negative relation between aggregate output and the stock of pollution (measured as the stock of CO₂ emissions). This relationship is also highly non-linear, increasing at an exponential rate. In the second part of the paper, we develop and estimate a two-country, two-sector model for the US and the euro area. With this model, we aim at analyzing how the public sector should respond to higher emissions and what are the direct costs that these policies might have. In the model, there are two types of firms, brown firms (which produce a polluting technology) and green firms. Brown firms also produce an externality, CO₂ emissions, which has detrimental effects on aggregate output. As brown firms do not face direct costs from polluting, they do not have incentives to reduce emissions. Notably, emissions in our model are global: the stock of CO₂ in the economy affects all countries, independently from where it is produced. This simplified economy captures the main trade-off between emissions and production, generating a classic market failure. According to our results, the current level of emission reduces output by between 0.4 and 0.75%. Notably, these estimates lay in the upper bound of the distribution of those delivered by studies in the early 2000s. To address market failure, governments should step in introducing taxes on emissions. With the tax, brown firms pay a cost for polluting hence facing the incentive to move to green technologies. Governments, however, might also adopt a beggar-thy-neighbour strategy. Reducing emissions is costly, as moves production away from the 'optimal' production mix of brown and green technology. Because emissions are global, a government could just wait for the other country to tackle climate change, ripping the benefits without facing any costs. We study how this strategic game unfolds and show three important results: first, cooperation is first-best optimal from a global prospective; second, countries face incentives to deviate from the cooperating equilibria; third, tariffs on imported brown goods (the only retaliation policy in case of deviation from the cooperation equilibrium) are ineffective because the exchange rate would move to compensate. We finally study monetary policy under when costs for climate change rise and show that the monetary authority should react stronger to deviations of inflation from its target.

Keywords: climate change, general equilibrium, optimal taxation, monetary policy

Procedia PDF Downloads 160
4115 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 96
4114 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 251
4113 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 127
4112 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia

Authors: Saleh Dabil

Abstract:

This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: (1) the supermarket profile (volume, location, standard and type of the store), (2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), (3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first is ‘the well distributing of the duties and responsibilities between the employees especially for security purposes’. Second is ‘installation of strong security system’ and ‘making well-designed store layout’. Third is ‘giving training for general employees’ and ‘to give periodically security skills training of employees’. There are other suggestions in the study can be looked up in the text.

Keywords: organized crime, retail, theft, loss prevention, store environment

Procedia PDF Downloads 196
4111 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 396
4110 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach

Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao

Abstract:

Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.

Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search

Procedia PDF Downloads 78
4109 Non-melanoma Nasal Skin Cancer: Literature Review

Authors: Geovanna dos Santos Romeiro, Polintia Rayza Brito da Silva, Luis Henrique Moura, Izadora Moreira Do Amaral, Marília Vitória Pinto Milhomem

Abstract:

Introduction: The nose is one of the most likely sites for the appearance of malignancy on the face. This can be associated with its unique position of exposure to environmental damage, lack of photoprotection and because it is an area susceptible to greater sun exposure. It is already known that the most common type of nasal tumor is basal cell carcinoma. Squamous cell carcinoma is less common but considerably more aggressive, with a tendency to grow rapidly and metastasize. Nasal skin cancer can have a good prognosis, regardless of the type of treatment chosen, i.e., surgery, radiotherapy or electrodissection. However, tumors that are not diagnosed and treated quickly can be harmful and have a greater chance of metastasizing. When curative surgery is performed, therapies and reconstructive surgical procedures are usually required. Objective: The objective is to review the literature on nasal skin tumors and their types and specific locations. Forty-four articles published in Pubmed related to the location of skin cancer in the specific nasal areas region were analyzed. Twelve were excluded for being prior to the year 2000, three with inconclusive results, and one with unbiased conclusions. Results and Conclusion: Regarding the prevalence of types of nasal tumors, basal cell carcinoma comprises the majority, occurring predominantly in the ala, tip and root; squamous cell carcinoma, on the other hand, is more common in the lateral borders and columella. Even so, 2 articles report that the prevalence of metastasis has a higher incidence in squamous cell carcinomas. All of this points to the importance of early location, including regions that are often overlooked in the examination if the patient is wearing glasses. This topic needs further investigation for a greater correlation between anatomy and clinical-surgical implications.

Keywords: skin cancer, melanoma, non-melanoma, surgery

Procedia PDF Downloads 53
4108 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 87
4107 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: mix proportioning, response surface methodology, compressive strength, optimal design

Procedia PDF Downloads 267
4106 Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number

Authors: Anvesh Gaddam, Amit Agrawal, Suhas Joshi, Mark Thompson

Abstract:

An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels.

Keywords: drag reduction, Poiseuille number, textured surfaces, wetting transition

Procedia PDF Downloads 161
4105 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 72
4104 Bridge Healthcare Access Gap with Artifical Intelligence

Authors: Moshmi Sangavarapu

Abstract:

The US healthcare industry has undergone tremendous digital transformation in recent years, but critical care access to lower-income ethnicities is still in its nascency. This population has historically showcased substantial hesitation to seek any medical assistance. While the lack of sufficient financial resources plays a critical role, the existing cultural and knowledge barriers also contribute significantly to widening the access gap. It is imperative to break these barriers to ensure timely access to therapeutic procedures that can save important lives! Based on ongoing research, healthcare access barriers can be best addressed by tapping the untapped potential of caregiver communities first. They play a critical role in patients’ diagnoses, building healthcare knowledge and instilling confidence in required therapeutic procedures. Recent technological advancements have opened many avenues by developing smart ways of reaching the large caregiver community. A digitized go-to-market strategy featuring connected media coupled with smart IoT devices and geo-location targeting can be collectively leveraged to reach this key audience group. AI/ML algorithms can be thoroughly trained to identify relevant data signals from users' location and browsing behavior and determine useful marketing touchpoints. The web behavior can be further assimilated with natural language processing to identify contextually relevant interest topics and decipher potential caregivers on digital avenues to serve that brand message. In conclusion, grasping the true health access journey of any lower-income ethnic group is important to design beneficial touchpoints that can alleviate patients’ concerns and allow them to break their own access barriers and opt for timely and quality healthcare.

Keywords: healthcare access, market access, diversity barriers, patient journey

Procedia PDF Downloads 55
4103 '3D City Model' through Quantum Geographic Information System: A Case Study of Gujarat International Finance Tec-City, Gujarat, India

Authors: Rahul Jain, Pradhir Parmar, Dhruvesh Patel

Abstract:

Planning and drawing are the important aspects of civil engineering. For testing theories about spatial location and interaction between land uses and related activities the computer based solution of urban models are used. The planner’s primary interest is in creation of 3D models of building and to obtain the terrain surface so that he can do urban morphological mappings, virtual reality, disaster management, fly through generation, visualization etc. 3D city models have a variety of applications in urban studies. Gujarat International Finance Tec-City (GIFT) is an ongoing construction site between Ahmedabad and Gandhinagar, Gujarat, India. It will be built on 3590000 m2 having a geographical coordinates of North Latitude 23°9’5’’N to 23°10’55’’ and East Longitude 72°42’2’’E to 72°42’16’’E. Therefore to develop 3D city models of GIFT city, the base map of the city is collected from GIFT office. Differential Geographical Positioning System (DGPS) is used to collect the Ground Control Points (GCP) from the field. The GCP points are used for the registration of base map in QGIS. The registered map is projected in WGS 84/UTM zone 43N grid and digitized with the help of various shapefile tools in QGIS. The approximate height of the buildings that are going to build is collected from the GIFT office and placed on the attribute table of each layer created using shapefile tools. The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (30 m X 30 m) grid data is used to generate the terrain of GIFT city. The Google Satellite Map is used to place on the background to get the exact location of the GIFT city. Various plugins and tools in QGIS are used to convert the raster layer of the base map of GIFT city into 3D model. The fly through tool is used for capturing and viewing the entire area in 3D of the city. This paper discusses all techniques and their usefulness in 3D city model creation from the GCP, base map, SRTM and QGIS.

Keywords: 3D model, DGPS, GIFT City, QGIS, SRTM

Procedia PDF Downloads 248
4102 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level

Procedia PDF Downloads 224