Search results for: fuzzy multiple attribute decision method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26176

Search results for: fuzzy multiple attribute decision method

25156 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 525
25155 Secured Power flow Algorithm Including Economic Dispatch with GSDF Matrix Using LabVIEW

Authors: Slimane Souag, Amel Graa, Farid Benhamida

Abstract:

In this paper we present a new method for solving the secured power flow problem by the economic dispatch using DC power flow method and Generation Shift Distribution Factor (GSDF), in this work we create a graphical interface in LabVIEW as a virtual instrument. Hence the dc power flow reduces the power flow problem to a set of linear equations, which make the iterative calculation very fast and the GSFD matrix present the effects of single and multiple generator MW change on the transmission line. The effectiveness of the method developed is identified through its application to an IEEE-14 bus test system. The calculation results show excellent performance of the proposed method, in regard to computation time and quality of results.

Keywords: electrical power system security, economic dispatch, sensitivity matrix, labview

Procedia PDF Downloads 495
25154 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 396
25153 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 476
25152 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 188
25151 AI In Health and Wellbeing - A Seven-Step Engineering Method

Authors: Denis Özdemir, Max Senges

Abstract:

There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.

Keywords: recommender systems, natural language processing, health apps, engineering methods

Procedia PDF Downloads 170
25150 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: risk, decision-making, manager, process, analysis, source of risk

Procedia PDF Downloads 266
25149 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria

Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah

Abstract:

This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.

Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale

Procedia PDF Downloads 146
25148 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.

Keywords: multi-criteria decision making, AHP, SAW, TOPSIS

Procedia PDF Downloads 114
25147 Financial Information and Collective Bargaining: Conflicting or Complementing

Authors: Humayun Murshed, Shibly Abdullah

Abstract:

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision-making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organizations within which the case studies are conducted.

Keywords: collective bargaining, developing countries, disclosures, financial information

Procedia PDF Downloads 475
25146 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 124
25145 Identification and Origins of Multiple Personality: A Criterion from Wiggins

Authors: Brittany L. Kang

Abstract:

One familiar theory of the origin of multiple personalities focuses on how symptoms of trauma or abuse are central causes, as seen in paradigmatic examples of the condition. The theory states that multiple personalities constitute a congenital condition, as babies all exhibit multiplicity, and that generally alters only remain separated due to trauma. In more typical cases, the alters converge and become a single identity; only in cases of trauma, according to this account, do the alters remain separated. This theory is misleading in many aspects, the most prominent being that not all multiple personality patients are victims of child abuse or trauma, nor are all cases of multiple personality observed in early childhood. The use of this criterion also causes clinical problems, including an inability to identify multiple personalities through the variety of symptoms and traits seen across observed cases. These issues present a need for revision in the currently applied criterion in order to separate the notion of child abuse and to be able to better understand the origins of multiple personalities itself. Identifying multiplicity through the application of identity theories will improve the current criterion, offering a bridge between identifying existing cases and understanding their origins. We begin by applying arguments from Wiggins, who held that each personality within a multiple was not a whole individual, but rather characters who switch off. Wiggins’ theory is supported by observational evidence of how such characters are differentiated. Alters of older ages are seen to require different prescription lens, in addition to having different handwriting. The alters may also display drastically varying styles of clothing, preferences in food, their gender, sexuality, religious beliefs and more. The definitions of terms such as 'personality' or 'persons' also become more distinguished, leading to greater understanding of who is exactly able to be classified as a patient of multiple personalities. While a more common meaning of personality is a designation of specific characteristics which account for the entirety of a person, this paper argues from Wiggins’ theory that each 'personality' is in fact only partial. Clarification of the concept in question will allow for more successful future clinical applications.

Keywords: identification, multiple personalities, origin, Wiggins' theory

Procedia PDF Downloads 243
25144 The Effect of Trans-Cranial Direct Current Stimulation (tDCS) on Cognitive Flexibility and Social Decision-Making in Football Players

Authors: Erfan Izadpanah

Abstract:

The present study was conducted to investigate the effect of the Trans-Cranial Direct Current Stimulation (tDCS) on cognitive flexibility and social decision-making in skilled, semi-skilled and novice football players. The present quasi-experimental pretest-posttest study was conducted on 60 randomly-selected subjects divided into trial and placebo groups (n=30 per group). The trial group received three 20-minute sessions of anodic stimulation at the intensity of 2 mA. The placebo group also received three sessions of sham anodic stimulation. Data were collected using the Wisconsin, Grant and Berg Card-Sorting Test (1948) and the ultimatum game and were then analyzed using the ANCOVA. The results showed significant differences between the skilled, semi-skilled and novice football players in the trial and placebo groups in terms of cognitive flexibility and social decision-making (P<0.01). TDCS appears to be able to improve cognitive flexibility and consequently social decision-making in football players and is recommended to sport psychologists and coaches as a useful intervention to increase cognitive flexibility and improve social decision-making in players.

Keywords: TDCS, cognitive flexibility, social decision-making, skilled, semi-skilled and novice football players

Procedia PDF Downloads 147
25143 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser

Abstract:

The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC

Procedia PDF Downloads 431
25142 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies

Authors: Mogale Sabone, Thabiso Ntlole

Abstract:

The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.

Keywords: decision support tool, manufacturing, quality control, quality management

Procedia PDF Downloads 572
25141 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 412
25140 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 167
25139 Configuring Systems to Be Viable in a Crisis: The Role of Intuitive Decision-Making

Authors: Ayham Fattoum, Simos Chari, Duncan Shaw

Abstract:

Volatile, uncertain, complex, and ambiguous (VUCA) conditions threaten systems viability with emerging and novel events requiring immediate and localized responses. Such responsiveness is only possible through devolved freedom and emancipated decision-making. The Viable System Model (VSM) recognizes the need and suggests maximizing autonomy to localize decision-making and minimize residual complexity. However, exercising delegated autonomy in VUCA requires confidence and knowledge to use intuition and guidance to maintain systemic coherence. This paper explores the role of intuition as an enabler of emancipated decision-making and autonomy under VUCA. Intuition allows decision-makers to use their knowledge and experience to respond rapidly to novel events. This paper offers three contributions to VSM. First, it designs a system model that illustrates the role of intuitive decision-making in managing complexity and maintaining viability. Second, it takes a black-box approach to theory development in VSM to model the role of autonomy and intuition. Third, the study uses a multi-stage discovery-oriented approach (DOA) to develop theory, with each stage combining literature, data analysis, and model/theory development and identifying further questions for the subsequent stage. We synthesize literature (e.g., VSM, complexity management) with seven months of field-based insights (interviews, workshops, and observation of a live disaster exercise) to develop a framework of intuitive complexity management framework and VSM models. The results have practical implications for enhancing the resilience of organizations and communities.

Keywords: Intuition, complexity management, decision-making, viable system model

Procedia PDF Downloads 76
25138 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project

Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra

Abstract:

Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.

Keywords: service industry, customer service, machine learning, decision making, information platform

Procedia PDF Downloads 625
25137 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)

Procedia PDF Downloads 522
25136 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 107
25135 Preparation and Evaluation of Multiple Unit Tablets of Aceclofenac

Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan

Abstract:

The present research is aimed at fabrication of multiple-unit controlled-release tablet formulation of aceclofenac by employing acrylic polymers as the release controlling excipients for drug multi-particulates to achieve the desired objectives of maintaining the same controlled release characteristics as that prior to their compression into tablet. Various manufacturers are successfully manufacturing and marketing aceclofenac controlled release tablet by applying directly coating materials on the tablet. The basic idea behind development of such formulations was to employ aqueous acrylics polymers dispersion as an alternative to the existing approaches, wherein the forces of compression may cause twist of drug pellets, but do not have adverse effects on the drug release properties. Thus, the study was undertaken to illustrate manufacturing of controlled release aceclofenac multiple-unit tablet formulation.

Keywords: aceclofenac, multiple-unit tablets, acrylic polymers, controlled-release

Procedia PDF Downloads 445
25134 Bridging the Gap between M and E, and KM: Towards the Integration of Evidence-Based Information and Policy Decision-Making

Authors: Xueqing Ivy Chen, Christo De Coning

Abstract:

It is clear from practice that a gap exists between Result-Based Monitoring and Evaluation (RBME) as a discipline, and Knowledge Management (KM) on the other hand. Whereas various government departments have institutionalised these functions, KM and M&E has functioned in isolation from each other in a practical sense in the public sector. It’s therefore necessary to explore the relationship between KM and M&E and the necessity for integration, so that a convergence of these disciplines can be established. An integration of KM and M&E will lead to integration and improvement of evidence-based information and policy decision-making. M&E and KM process models are available but the complementarity between specific process steps of these process models are not exploited. A need exists to clarify the relationships between these functions in order to ensure evidence based information and policy decision-making. This paper will depart from the well-known policy process models, such as the generic model and consider recent on the interface between policy, M&E and KM.

Keywords: result-based monitoring and evaluation, RBME, knowledge management, KM, evident based decision making, public policy, information systems, institutional arrangement

Procedia PDF Downloads 158
25133 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template

Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou

Abstract:

The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.

Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation

Procedia PDF Downloads 541
25132 A Comparison between Empirical and Theoretical OC Curves Related to Acceptance Sampling for Attributes

Authors: Encarnacion Alvarez, Noemı Hidalgo-Rebollo, Juan F. Munoz, Francisco J. Blanco-Encomienda

Abstract:

Many companies use the technique named as acceptance sampling which consists on the inspection and decision making regarding products. According to the results derived from this method, the company takes the decision of acceptance or rejection of a product. The acceptance sampling can be applied to the technology management, since the acceptance sampling can be seen as a tool to improve the design planning, operation and control of technological products. The theoretical operating characteristic (OC) curves are widely used when dealing with acceptance sampling. In this paper, we carry out Monte Carlo simulation studies to compare numerically the empirical OC curves derived from the empirical results to the customary theoretical OC curves. We analyze various possible scenarios in such a way that the differences between the empirical and theoretical curves can be observed under different situations.

Keywords: single-sampling plan, lot, Monte Carlo simulation, quality control

Procedia PDF Downloads 474
25131 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 171
25130 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 158
25129 Multi-Criteria Decision Making Approaches for Facility Planning Problem Evaluation: A Survey

Authors: Ahmed M. El-Araby, Ibrahim Sabry, Ahmed El-Assal

Abstract:

The relationships between the industrial facilities, the capacity available for these facilities, and the costs involved are the main factors in deciding the correct selection of a facility layout. In general, an issue of facility layout is considered to be an unstructured problem of decision-making. The objective of this work is to provide a survey that describes the techniques by which a facility planning problem can be solved and also the effect of these techniques on the efficiency of the layout. The multi-criteria decision making (MCDM) techniques can be classified according to the previous researches into three categories which are the use of single MCDM, combining two or more MCDM, and the integration of MCDM with another technique such as genetic algorithms (GA). This paper presents a review of different multi-criteria decision making (MCDM) techniques that have been proposed in the literature to pick the most suitable layout design. These methods are particularly suitable to deal with complex situations, including various criteria and conflicting goals which need to be optimized simultaneously.

Keywords: facility layout, MCDM, GA, literature review

Procedia PDF Downloads 210
25128 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs

Authors: S. Lertsakulpasuk, S. Athichanagorn

Abstract:

As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.

Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs

Procedia PDF Downloads 447
25127 Motion-Based Detection and Tracking of Multiple Pedestrians

Authors: A. Harras, A. Tsuji, K. Terada

Abstract:

Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.

Keywords: automatic detection, tracking, pedestrians, counting

Procedia PDF Downloads 262