Search results for: excitation propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1162

Search results for: excitation propagation

142 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 254
141 Nonlinear Optics of Dirac Fermion Systems

Authors: Vipin Kumar, Girish S. Setlur

Abstract:

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.

Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems

Procedia PDF Downloads 292
140 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 150
139 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 168
138 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 134
137 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases

Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim

Abstract:

Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.

Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force

Procedia PDF Downloads 389
136 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 336
135 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy

Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed

Abstract:

This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.

Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states

Procedia PDF Downloads 293
134 Mitigation of Offshore Piling Noise Effects on Marine Mammals

Authors: Waled A. Dawoud, Abdelazim M. Negm, Nasser M. Saleh

Abstract:

Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques.

Keywords: offshore pile driving, sound propagation models, noise effects on marine mammals, Underwater noise mitigation

Procedia PDF Downloads 542
133 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 183
132 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy

Procedia PDF Downloads 71
131 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 363
130 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 505
129 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 381
128 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver

Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin

Abstract:

National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.

Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band

Procedia PDF Downloads 366
127 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings

Authors: Adinew Gebremeskel Tizazu

Abstract:

The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.

Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies

Procedia PDF Downloads 26
126 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme

Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara

Abstract:

In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.

Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field

Procedia PDF Downloads 258
125 Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco

Authors: Elachouri Mostafa, Fakchich Jamila, Lazaar Jamila, Elmadmad Mohammed, Marhom Mostafa

Abstract:

Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco.

Keywords: Morocco, medicinal plants, ethnopharmacology, natural products, drug-discovery

Procedia PDF Downloads 310
124 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 31
123 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 165
122 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.

Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies

Procedia PDF Downloads 386
121 Web Map Service for Fragmentary Rockfall Inventory

Authors: M. Amparo Nunez-Andres, Nieves Lantada

Abstract:

One of the most harmful geological risks is rockfalls. They cause both economic lost, damaged in buildings and infrastructures, and personal ones. Therefore, in order to estimate the risk of the exposed elements, it is necessary to know the mechanism of this kind of events, since the characteristics of the rock walls, to the propagation of fragments generated by the initial detached rock mass. In the framework of the research RockModels project, several inventories of rockfalls were carried out along the northeast of the Spanish peninsula and the Mallorca island. These inventories have general information about the events, although the important fact is that they contained detailed information about fragmentation. Specifically, the IBSD (Insitu Block Size Distribution) is obtained by photogrammetry from drone or TLS (Terrestrial Laser Scanner) and the RBSD (Rock Block Size Distribution) from the volume of the fragment in the deposit measured by hand. In order to share all this information with other scientists, engineers, members of civil protection, and stakeholders, it is necessary a platform accessible from the internet and following interoperable standards. In all the process, open-software have been used: PostGIS 2.1., Geoserver, and OpenLayers library. In the first step, a spatial database was implemented to manage all the information. We have used the data specifications of INSPIRE for natural risks adding specific and detailed data about fragmentation distribution. The next step was to develop a WMS with Geoserver. A previous phase was the creation of several views in PostGIS to show the information at different scales of visualization and with different degrees of detail. In the first view, the sites are identified with a point, and basic information about the rockfall event is facilitated. In the next level of zoom, at medium scale, the convex hull of the rockfall appears with its real shape and the source of the event and fragments are represented by symbols. The queries at this level offer a major detail about the movement. Eventually, the third level shows all elements: deposit, source, and blocks, in their real size, if it is possible, and in their real localization. The last task was the publication of all information in a web mapping site (www.rockdb.upc.edu) with data classified by levels using libraries in JavaScript as OpenLayers.

Keywords: geological risk, web mapping, WMS, rockfalls

Procedia PDF Downloads 157
120 Meta-Magnetic Properties of LaFe₁₂B₆ Type Compounds

Authors: Baptiste Vallet-Simond, Léopold V. B. Diop, Olivier Isnard

Abstract:

The antiferromagnetic itinerant-electron compound LaFe₁₂B₆ occupies a special place among rare-earth iron-rich intermetallic; it presents exotic magnetic and physical properties. The unusual amplitude-modulated spin configuration defined by a propagation vector k = (¼, ¼, ¼), remarkably weak Fe magnetic moment (0.43 μB) in the antiferromagnetic ground state, especially low magnetic ordering temperature TN = 36 K for an Fe-rich phase, a multicritical point in the complex magnetic phase diagram, both normal and inverse magnetocaloric effects, and huge hydrostatic pressure effects can be highlighted as the most relevant. Both antiferromagnetic (AFM) and paramagnetic (PM) states can be transformed into the ferromagnetic (FM) state via a field-induced first-order metamagnetic transition. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of steep magnetization jumps separated by plateaus, giving rise to an unusual avalanche-like behavior. The metamagnetic transition is accompanied by giant magnetoresistance and large magnetostriction. In the present work, we report on the intrinsic magnetic properties of the La₁₋ₓPrₓFe₁₂B₆ series of compounds exhibiting sharp metamagnetic transitions. The study of the structural, magnetic, magneto-transport, and magnetostrictive properties of the La₁₋ₓPrₓFe₁₂B₆ system was performed by combining a wide variety of measurement techniques. Magnetic measurements were performed up to µ0H = 10 T. It was found that the proportion of Pr had a strong influence on the magnetic properties of this series of compounds. At x=0.05, the ground state at 2K is that of an antiferromagnet, but the critical transition field Hc has been lowered from Hc = 6T at x = 0 to Hc = 2.5 Tat x=0.05. And starting from x=0.10, the ground state of this series of compounds is a coexistence of AFM and FM parts. At x=0.30, the AFM order has completely vanished, and only the FM part is left. However, we still observe meta-magnetic transitions at higher temperatures (above 100 K for x=0.30) from the paramagnetic (P) state to a forced FM state. And, of course, such transitions are accompanied by strong magneto-caloric, magnetostrictive, and magnetoresistance effects. The Curie temperatures for the probed compositions going from x=0.05 to x=0.30 were spread over the temperature range of 40 K up to 100 K.

Keywords: metamagnetism, RMB intermetallic, magneto-transport effect, metamagnetic transitions

Procedia PDF Downloads 63
119 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: photoinduced tautomerization reactions, gas phse spectroscopy, ), IR-UV double resonance spectroscopy, resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)

Procedia PDF Downloads 82
118 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 441
117 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 340
116 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate

Procedia PDF Downloads 518
115 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes

Authors: R. P. Hewawasam, A. F. Dulhunty

Abstract:

The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.

Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2

Procedia PDF Downloads 278
114 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 280
113 Data Calibration of the Actual versus the Theoretical Micro Electro Mechanical Systems (MEMS) Based Accelerometer Reading through Remote Monitoring of Padre Jacinto Zamora Flyover

Authors: John Mark Payawal, Francis Aldrine Uy, John Paul Carreon

Abstract:

This paper shows the application of Structural Health Monitoring, SHM into bridges. Bridges are structures built to provide passage over a physical obstruction such as rivers, chasms or roads. The Philippines has a total of 8,166 national bridges as published on the 2015 atlas of the Department of Public Works and Highways (DPWH) and only 2,924 or 35.81% of these bridges are in good condition. As a result, PHP 30.464 billion of the 2016 budget of DPWH is allocated on roads and/or bridges maintenance alone. Intensive spending is owed to the present practice of outdated manual inspection and assessment, and poor structural health monitoring of Philippine infrastructures. As the School of Civil, Environmental, & Geological Engineering of Mapua Institute of Technology (MIT) continuous its well driven passion in research based projects, a partnership with the Department of Science and Technology (DOST) and the DPWH launched the application of Structural Health Monitoring, (SHM) in Padre Jacinto Zamora Flyover. The flyover is located along Nagtahan Boulevard in Sta. Mesa, Manila that connects Brgy. 411 and Brgy. 635. It gives service to vehicles going from Lacson Avenue to Mabini Bridge passing over Legarda Flyover. The flyover is chosen among the many located bridges in Metro Manila as the focus of the pilot testing due to its site accessibility, and complete structural built plans and specifications necessary for SHM as provided by the Bureau of Design, BOD department of DPWH. This paper focuses on providing a method to calibrate theoretical readings from STAAD Vi8 Pro and sync the data to actual MEMS accelerometer readings. It is observed that while the design standards used in constructing the flyover was reflected on the model, actual readings of MEMS accelerometer display a large difference compared to the theoretical data ran and taken from STAAD Vi8 Pro. In achieving a true seismic response of the modeled bridge or hence syncing the theoretical data to the actual sensor reading also called as the independent variable of this paper, analysis using single degree of freedom (SDOF) of the flyover under free vibration without damping using STAAD Vi8 Pro is done. The earthquake excitation and bridge responses are subjected to earthquake ground motion in the form of ground acceleration or Peak Ground Acceleration, PGA. Translational acceleration load is used to simulate the ground motion of the time history analysis acceleration record in STAAD Vi8 Pro.

Keywords: accelerometer, analysis using single degree of freedom, micro electro mechanical system, peak ground acceleration, structural health monitoring

Procedia PDF Downloads 317