Search results for: database annotation
696 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 160695 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 274694 A Modelling Study to Compare the Storm Surge along Oman Coast Due to Ashobaa and Nanauk Cyclones
Authors: R. V. Suresh Reddi, Vishnu S. Das, Mathew Leslie
Abstract:
The weather systems within the Arabian Sea is very dynamic in terms of monsoon and cyclone events. The storms generated in the Arabian Sea are more likely to progress in the north-west or west direction towards Oman. From the database of Joint Typhoon Warning Center (JTWC), the number of cyclones that hit the Oman coast or pass within close vicinity is noteworthy and therefore they must be considered when looking at coastal/port engineering design and development projects. This paper provides a case study of two cyclones, i.e., Nanauk (2014) and Ashobaa (2015) to assess the impact on storm surge off the Oman coast. These two cyclones have been selected since they are comparable in terms of maximum wind, cyclone duration, central pressure and month of occurrence. They are of similar strength but differ in track, allowing the impact of proximity to the coast to be considered. Of the two selected cyclones, Ashobaa is the 'extreme' case with close proximity while Nanauk remains further offshore and is considered as a more typical case. The available 'best-track' data from JTWC is obtained for the 2 selected cyclones, and the cyclone winds are generated using a 'Cyclone Wind Generation Tool' from MIKE (modelling software) from DHI (Danish Hydraulic Institute). Using MIKE 21 Hydrodynamic model powered by DHI the storm surge is estimated at selected offshore locations along the Oman coast.Keywords: costal engineering, cyclone, storm surge, modelling
Procedia PDF Downloads 145693 An Integrated Architecture of E-Learning System to Digitize the Learning Method
Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem
Abstract:
The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.Keywords: database, e-learning, LMS, Moodle
Procedia PDF Downloads 188692 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index
Procedia PDF Downloads 134691 Mapping of Adrenal Gland Diseases Research in Middle East Countries: A Scientometric Analysis, 2007-2013
Authors: Zahra Emami, Mohammad Ebrahim Khamseh, Nahid Hashemi Madani, Iman Kermani
Abstract:
The aim of the study was to map scientific research on adrenal gland diseases in the Middle East countries through the Web of Science database using scientometric analysis. Data were analyzed with Excel software; and HistCite was used for mapping of the scientific texts. In this study, from a total of 268 retrieved records, 1125 authors from 328 institutions published their texts in 138 journals. Among 17 Middle East countries, Turkey ranked first with 164 documents (61.19%), Israel ranked second with 47 documents (15.53%) and Iran came in the third place with 26 documents. Most of the publications (185 documents, 69.2%) were articles. Among the universities of the Middle East, Istanbul University had the highest science production rate (9.7%). The Journal of Clinical Endocrinology & Metabolism had the highest TGCS (243 citations). In the scientific mapping, 7 clusters were formed based on TLCS (Total Local Citation Score) & TGCS (Total Global Citation Score). considering the study results, establishment of scientific connections and collaboration with other countries and use of publications on adrenal gland diseases from high ranking universities can help in the development of this field and promote the medical practice in this regard. Moreover, investigation of the formed clusters in relation to Congenital Hyperplasia and puberty related disorders can be research priorities for investigators.Keywords: mapping, scientific research, adrenal gland diseases, scientometric
Procedia PDF Downloads 273690 Incidence of Cancer in Patients with Alzheimer's Disease: A 11-Year Nationwide Population-Based Study
Authors: Jun Hong Lee
Abstract:
Background: Alzheimer`s disease (AD) I: creases with age and is characterized by the premature progressive loss of neuronal cell. In contrast, cancer cells have inappropriate cell proliferation and resistance to cell death. Objective: We evaluated the association between cancer and AD and also examined the specific types of cancer. Patients and Methods/Material and Methods: This retrospective, nationwide, longitudinal study used National Health Insurance Service – Senior cohort (NHIS-Senior) 2002-2013, which was released by the KNHIS in 2016, comprising 550,000 random subjects who were selected from over than 60. The study included a cohort of 4,408 patients who were first diagnoses as AD between 2003 and 2005. To match each dementia patient, 19,150 subjects were selected from the database by Propensity Score Matching. Results: We enrolled 4,790 patients for analysis in this cohort and the prevalence of AD was higher in female (19.29%) than in male (17.71%). A higher prevalence of AD was observed in the 70-84 year age group and in the higher income status group. A total of 540 cancers occurred within the observation interval. Overall cancer was less frequent in those with AD (12.25%) than in the control (18.46%), with HR 0.704 (95% Confidence Intervals (CIs)=0.0.64-0.775, p-Value < 0.0001). Conclusion: Our data showed a decreased incidence of overall cancers in patients with AD similar to previous studies. Patients with AD had a significantly decreased risk of colon & rectum, lung and stomach cancer. This finding lower than but consistent with Western countries. We need further investigation of genetic evidence linking AD to cancer.Keywords: Alzheimer, cancer, nationwide, longitudinal study
Procedia PDF Downloads 178689 Contactless Attendance System along with Temperature Monitoring
Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani
Abstract:
The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature
Procedia PDF Downloads 185688 World’s Fair (EXPO) Induced Heritage
Authors: Işılay Tiarnagh Sheridan
Abstract:
World EXPO, short version for the “exposition”, is a large universal public exhibition held since 1851. Within the 164 years, it was organized 34 times in 22 cities and as a result it has given birth to its very own culture unlike most of other international events. It has an outstanding power in transforming the places, in which it is held, into trademarks via changes in their urban tissues. For that, it is widely remembered with its cities instead of its countries. Within the scope of this change, some constructions were planned to be temporary, some planned to be permanent and some were thought to be temporary but kept afterwards becoming important monuments such as the Crystal Palace of London (though it was destroyed later by a fire) and the Eiffel Tower of Paris. These examples are the most prominent names upon considering World EXPOs. Yet, there are so many other legacies of these events within modern city fabric today that we don’t usually associate with its Expo history. Some of them are leading figures not only for the housing city but for other cities also, such as the first Metro line of Paris during 1900 World EXPO; some of them are listed as monuments of the cities such as Saint Louis Art Museum of 1904 World EXPO; some of them, like Melbourne Royal Exhibition Building of 1880 World’s EXPO, are among UNESCO World Heritage Sites and some of them are the masterpieces of modern architecture such as the famous Barcelona Pavilion, German pavilion of the 1929 World’s EXPO, of Ludwig Mies van der Rohe. Thus, the aim of this paper is to analyze the history of World’s EXPO and its eventual results in the birth of its own cultural heritage. Upon organizing these results, the paper aims to create a brief list of EXPO heritage monuments and sites so as to form a database for their further conservation needs.Keywords: expo, heritage, world's fair, legacy
Procedia PDF Downloads 440687 Approaches to Ethical Hacking: A Conceptual Framework for Research
Authors: Lauren Provost
Abstract:
The digital world remains increasingly vulnerable, making the development of effective cybersecurity approaches even more critical in supporting the success of the digital economy and national security. Although approaches to cybersecurity have shifted and improved in the last decade with new models, especially with cloud computing and mobility, a record number of high severity vulnerabilities were recorded in the National Institute of Standards and Technology (NIST), and its National Vulnerability Database (NVD) in 2020. This is due, in part, to the increasing complexity of cyber ecosystems. Security must be approached with a more comprehensive, multi-tool strategy that addresses the complexity of cyber ecosystems, including the human factor. Ethical hacking has emerged as such an approach: a more effective, multi-strategy, comprehensive approach to cyber security's most pressing needs, especially understanding the human factor. Research on ethical hacking, however, is limited in scope. The two main objectives of this work are to (1) provide highlights of case studies in ethical hacking, (2) provide a conceptual framework for research in ethical hacking that embraces and addresses both technical and nontechnical security measures. Recommendations include an improved conceptual framework for research centered on ethical hacking that addresses many factors and attributes of significant attacks that threaten computer security; a more robust, integrative multi-layered framework embracing the complexity of cybersecurity ecosystems.Keywords: ethical hacking, literature review, penetration testing, social engineering
Procedia PDF Downloads 218686 Succeeding through Disruption: Exploring the Factors Influencing the Adoption of Disruptive Technologies in the Mobile Telecommunications Industry in Zimbabwe
Authors: Africa Makasi
Abstract:
The research explored factors influencing the adoption of disruptive technologies in the mobile telecommunications industry in Zimbabwe. Data was gathered from the second biggest competitor in the industry with over 3 million subscribers as the main case of study. The survey was conducted by purposively selecting 70 respondents from a population of 3,000,000 (three million) active subscribers from the company’s database. A skip interval of 42,857 was used to randomly select the sample. Customer representatives were selected from the company’s five regional offices using a two-stage cluster sampling technique. Employee participants were purposively selected from the company’s head office. Self-administered questionnaires were used in the research. A pilot test was conducted and the assessment of the reliability of the research instruments used in the research performed. Results of the pilot study were analyzed to test for reliability using SPSS. The results confirmed that the style of leadership and its thrust may help speed up or reduce the adoption of disruptive technologies. This was reflected by a p–value of 0.01 which is less than 0.05. The null hypothesis was thus rejected and the strong relationship between leadership and adoption of disruptive technology is confirmed. Similar results were also obtained with respect to staff competence, availability of funding and the type of infrastructure available Future research should look at organizational ambidexterity as well as exploitation and exploration paradigms in organizations in the telecommunications industry and their impact on the adoption of disruptive technologies.Keywords: disruptive innovation, adoption, mobile telecommunication industry, exploration and exploitation
Procedia PDF Downloads 369685 Indian Diplomacy in a Post Pandemic World
Authors: Esha Banerji
Abstract:
This paper attempts an assessment of India's behaviour as a foreign policy actor amidst the COVID 19 pandemic by briefly surveying the various introductions and alterations made to India's foreign policy. First, the paper attempts to establish the key strategic pillars of Indian foreign policy after reviewing the existing works. It then proceeds to assess the prominent part played by Health Diplomacy ("Vaccine Maitri") in India's bilateral and multilateral relations during the pandemic and the role of the Indian diaspora in shaping India's foreign policy. This is followed by examining "India's Neighbourhood First policy" and the way it's been employed by the Indian government to extend India’s strategic influence during the pandemic. An empirical assessment will be done to examine the changing dynamics of India's relation with different regional groupings like SAARC, ASEAN, BIMSTEC, etc. The paper also explores the new alliances formed post-pandemic and India's role in them. This paper analyses the contemporary challenges that the largest nation in South Asia faces with the onset of a global pandemic and how Ancient Indian values like "Vasudhaiva Kutumbakam" have influenced India's foreign policy, especially during the pandemic. It also attempts to grasp the changes within the negotiation style of the Indian government, and the role played by various stakeholders in shaping India's position in the present geopolitical landscape. The study has been conducted using data collected from government records, External Affairs Ministry database, and other available literature. The paper concludes with an attempt to predict the far-reaching strategic implications that the policy, as mentioned above, may have for India.Keywords: Indian foreign policy, COVID19, diplomacy, post pandemic world
Procedia PDF Downloads 302684 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein
Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić
Abstract:
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR
Procedia PDF Downloads 304683 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 298682 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Authors: S. Niamkaeo, O. Robert, O. Chaowalit
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system
Procedia PDF Downloads 169681 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT
Procedia PDF Downloads 458680 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems
Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos
Abstract:
Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system
Procedia PDF Downloads 183679 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.Keywords: clustering, k-mers, longest common subsequence, SOM
Procedia PDF Downloads 267678 Evaluating and Reducing Aircraft Technical Delays and Cancellations Impact on Reliability Operational: Case Study of Airline Operator
Authors: Adel A. Ghobbar, Ahmad Bakkar
Abstract:
Although special care is given to maintenance, aircraft systems fail, and these failures cause delays and cancellations. The occurrence of Delays and Cancellations affects operators and manufacturers negatively. To reduce technical delays and cancellations, one should be able to determine the important systems causing them. The goal of this research is to find a method to define the most expensive delays and cancellations systems for Airline operators. A predictive model was introduced to forecast the failure and their impact after carrying out research that identifies relevant information to tackle the problems faced while answering the questions of this paper. Data were obtained from the manufacturers’ services reliability team database. Subsequently, delays and cancellations evaluation methods were identified. No cost estimation methods were used due to their complexity. The model was developed, and it takes into account the frequency of delays and cancellations and uses weighting factors to give an indication of the severity of their duration. The weighting factors are based on customer experience. The data Analysis approach has shown that delays and cancellations events are not seasonal and do not follow any specific trends. The use of weighting factor does have an influence on the shortlist over short periods (Monthly) but not the analyzed period of three years. Landing gear and the navigation system are among the top 3 factors causing delays and cancellations for all three aircraft types. The results did confirm that the cooperation between certain operators and manufacture reduce the impact of delays and cancellations.Keywords: reliability, availability, delays & cancellations, aircraft maintenance
Procedia PDF Downloads 132677 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models
Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo
Abstract:
Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps
Procedia PDF Downloads 98676 Prevalence of Cerebral Microbleeds in Apparently Healthy, Elderly Population: A Meta-Analysis
Authors: Vidishaa Jali, Amit Sinha, Kameshwar Prasad
Abstract:
Background and Objective: Cerebral microbleeds are frequently found in healthy elderly individuals. We performed a meta- analysis to determine the prevalence of cerebral microbleeds in apparently healthy, elderly population and to determine the effect of age, smoking and hypertension on the occurrence of cerebral microbleeds. Methods: Relevant literature was searched using electronic databases such as MEDLINE, EMBASE, PubMed, Cochrane database, Google scholar to identify studies on the prevalence of cerebral microbleeds in general elderly population till March 2016. STATA version 13 software was used for analysis. Fixed effect model was used if heterogeneity was less than 50%. Otherwise, random effect model was used. Meta- regression analysis was performed to check any effect of important variables such as age, smoking, hypertension. Selection Criteria: We included cross-sectional studies performed in apparently healthy elderly population, who had age more than 50 years. Results: The pooled proportion of cerebral microbleeds in healthy population is 12% (95% CI, 0.11 to 0.13). No significant effect of age was found on the prevalence of cerebral microbleeds (p= 0.99). A linear relationship between increase in hypertension and the prevalence of cerebral microbleeds was found, however, this linear relationship was not statistically significant (p=0.16). Similarly, A linear relationship between increase in smoking and the prevalence of cerebral microbleeds was found, however, this linear relationship was also not statistically significant (p=0.21). Conclusion: Presence of cerebral microbleeds is evident in apparently healthy, elderly population, in more than 10% of individuals.Keywords: apparently healthy, elderly, prevalence, cerebral microbleeds
Procedia PDF Downloads 296675 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 302674 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 442673 The Internet of Things: A Survey of Authentication Mechanisms, and Protocols, for the Shifting Paradigm of Communicating, Entities
Authors: Nazli Hardy
Abstract:
Multidisciplinary application of computer science, interactive database-driven web application, the Internet of Things (IoT) represents a digital ecosystem that has pervasive technological, social, and economic, impact on the human population. It is a long-term technology, and its development is built around the connection of everyday objects, to the Internet. It is estimated that by 2020, with billions of people connected to the Internet, the number of connected devices will exceed 50 billion, and thus IoT represents a paradigm shift in in our current interconnected ecosystem, a communication shift that will unavoidably affect people, businesses, consumers, clients, employees. By nature, in order to provide a cohesive and integrated service, connected devices need to collect, aggregate, store, mine, process personal and personalized data on individuals and corporations in a variety of contexts and environments. A significant factor in this paradigm shift is the necessity for secure and appropriate transmission, processing and storage of the data. Thus, while benefits of the applications appear to be boundless, these same opportunities are bounded by concerns such as trust, privacy, security, loss of control, and related issues. This poster and presentation look at a multi-factor authentication (MFA) mechanisms that need to change from the login-password tuple to an Identity and Access Management (IAM) model, to the more cohesive to Identity Relationship Management (IRM) standard. It also compares and contrasts messaging protocols that are appropriate for the IoT ecosystem.Keywords: Internet of Things (IoT), authentication, protocols, survey
Procedia PDF Downloads 299672 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 369671 Lactic Acid, Citric Acid, and Potassium Bitartrate Non-Hormonal Prescription Vaginal PH Modulator Gel for the Prevention of Pregnancy
Authors: Shanna Su, Kathleen Vincent
Abstract:
Introduction: A non-hormonal prescription vaginal pH modulator (VPM) gel (Phexxi®), with active ingredients lactic acid, citric acid, and potassium bitartrate, has recently been approved for the prevention of pregnancy in the United States. The objective of this review is to compile the evidence available from published preclinical and clinical trials to support its use. Areas covered: PubMed was searched for published literature on VPM gel. Two Phase III trials were found on the clinicaltrials.gov database. The results demonstrated that VPM gel is safe, with minimal side effects, and effective (cumulative 6-7 cycle pregnancy rate of 4.1-13.65%, (Pearl Index 27.5) as a contraceptive. Microbicidal effects suggest the potential for the prevention of sexually transmitted infections (STIs); currently, a Phase III clinical trial is being conducted to evaluate the prevention of chlamydia and gonorrhea. Expert opinion: Non-hormonal reversible contraceptive options have been limited to the highly effective copper-releasing intrauterine device that requires insertion by a trained clinician and less effective coitally-associated barrier and spermicide options which are typically available over-the-counter. Spermicides, which improve the efficacy of barrier devices, may increase the risk of Human Immunodeficiency Virus (HIV)/STIs. VPM gel provides a new safe, effective non-hormonal contraceptive option with the potential for prevention of STIs.Keywords: citric acid, lactic acid, non-hormonal contraception, potassium bitartrate, topical vaginal contraceptive, vaginal pH modulator gel
Procedia PDF Downloads 100670 Sustainability and Energy-Efficiency in Buildings: A review
Authors: Medya Fathi
Abstract:
Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.Keywords: sustainability, energy performance, energy efficiency, buildings, review
Procedia PDF Downloads 71669 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development
Authors: Apostolos Lagarias, Anastasia Stratigea
Abstract:
Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growthKeywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics
Procedia PDF Downloads 138668 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems
Authors: Ahmed Fradi
Abstract:
Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation
Procedia PDF Downloads 262667 The Effect of Heart Rate and Valence of Emotions on Perceived Intensity of Emotion
Authors: Madeleine Nicole G. Bernardo, Katrina T. Feliciano, Marcelo Nonato A. Nacionales III, Diane Frances M. Peralta, Denise Nicole V. Profeta
Abstract:
This study aims to find out if heart rate variability and valence of emotion have an effect on perceived intensity of emotion. Psychology undergraduates (N = 60) from the University of the Philippines Diliman were shown 10 photographs from the Japanese Female Facial Expression (JAFFE) Database, along with a corresponding questionnaire with a Likert scale on perceived intensity of emotion. In this 3 x 2 mixed subjects factorial design, each group was either made to do a simple exercise prior to answering the questionnaire in order to increase the heart rate, listen to a heart rate of 120 bpm, or colour a drawing to keep the heart rate stable. After doing the activity, the participants then answered the questionnaire, providing a rating of the faces according to the participants’ perceived emotional intensity on the photographs. The photographs presented were either of positive or negative emotional valence. The results of the experiment showed that neither an induced fast heart rate or perceived fast heart rate had any significant effect on the participants’ perceived intensity of emotion. There was also no interaction effect of heart rate variability and valence of emotion. The insignificance of results was explained by the Philippines’ high context culture, accompanied by the prevalence of both intensely valenced positive and negative emotions in Philippine society. Insignificance in the effects were also attributed to the Cannon-Bard theory, Schachter-Singer theory and various methodological limitations.Keywords: heart rate variability, perceived intensity of emotion, Philippines , valence of emotion
Procedia PDF Downloads 252