Search results for: cross axis wind turbine
4878 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 3214877 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients
Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari
Abstract:
The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation
Procedia PDF Downloads 824876 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.Keywords: renewable energy, power, storage, wind, energy plan
Procedia PDF Downloads 774875 Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil
Authors: Eddegdag Nasser, Naamane Azzeddine, Radouani Mohammed, Ensam Meknes
Abstract:
In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model.Keywords: supersonic, viscous, triple deck technique, asymptotic methods, AF300 supersonic wind tunnel, reduced airfoil model
Procedia PDF Downloads 2384874 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)
Procedia PDF Downloads 3814873 The Pangs of Unemployment and Its Impediment to Nation Building
Authors: Vitalis Okwuchukwu Opara
Abstract:
The task of nation building primarily consist in welding together, diverse cultural groups into a united nation state, which develops a centripetal political culture that makes its people see themselves as members of one nation linked together by more reliable ties than the coercion offered by the state. Comparatively on the contrary, most countries in the world today are comprised of diverse nationalities, each with its unique set of norms and values, which often come into conflict with others. As such, the task of nation building is in uniting these diverse cultural groups into a united nation state and various human elements that make up its geopolitical zone. The most outstanding impediment to achieving this task is unemployment. Unemployment is like a peril against the nation building. Unemployment is an obstacle for growth of a nation. Often it is said that the wise see obstacles as stepping-stones to advance further. The pangs of unemployment impede nation building such that sometimes it takes very long time to do away with the problem. In recent times, there has been a revolutionary wind blowing across the world. This wind is bound to wake up nations leaders to sit up to their responsibility. Unemployment causes youth restiveness, brings leaders to their knees. It breeds problem. This work is intended to expose the pangs of unemployment and its impending peril to nation building.Keywords: pangs, unemployment, obstacles, nation-building
Procedia PDF Downloads 3534872 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie
Abstract:
The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.Keywords: end clamp effect, full-size timber test, shear properties, torsion test, wood engineering
Procedia PDF Downloads 2784871 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach
Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday
Abstract:
One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach
Procedia PDF Downloads 1964870 Different Cognitive Processes in Selecting Spatial Demonstratives: A Cross-Linguistic Experimental Survey
Authors: Yusuke Sugaya
Abstract:
Our research conducts a cross-linguistic experimental investigation into the cognitive processes involved in distance judgment necessary for selecting demonstratives in deictic usage. Speakers may consider the addressee's judgment or apply certain criteria for distance judgment when they produce demonstratives. While it can be assumed that there are language and cultural differences, it remains unclear how these differences manifest across languages. This research conducted online experiments involving speakers of six languages—Japanese, Spanish, Irish, English, Italian, and French—in which a wide variety of drawings were presented on a screen, varying conditions from three perspectives: addressee, comparisons, and standard. The results of the experiments revealed various distinct features associated with demonstratives in each language, highlighting differences from a comparative standpoint. For one thing, there was an influence of a specific reference point (i.e., Standard) on the selection in Japanese and Spanish, whereas there was relatively an influence of competitors in English and Italian.Keywords: demonstratives, cross-linguistic experiment, distance judgment, social cognition
Procedia PDF Downloads 504869 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 1164868 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers
Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha
Abstract:
Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer
Procedia PDF Downloads 1654867 The Validation and Reliability of the Arabic Effort-Reward Imbalance Model Questionnaire: A Cross-Sectional Study among University Students in Jordan
Authors: Mahmoud M. AbuAlSamen, Tamam El-Elimat
Abstract:
Amid the economic crisis in Jordan, the Jordanian government has opted for a knowledge economy where education is promoted as a mean for economic development. University education usually comes at the expense of study-related stress that may adversely impact the health of students. Since stress is a latent variable that is difficult to measure, a valid tool should be used in doing so. The effort-reward imbalance (ERI) is a model used as a measurement tool for occupational stress. The model was built on the notion of reciprocity, which relates ‘effort’ to ‘reward’ through the mediating ‘over-commitment’. Reciprocity assumes equilibrium between both effort and reward, where ‘high’ effort is adequately compensated with ‘high’ reward. When this equilibrium is violated (i.e., high effort with low reward), this may elicit negative emotions and stress, which have been correlated to adverse health conditions. The theory of ERI was established in many different parts of the world, and associations with chronic diseases and the health of workers were explored at length. While much of the effort-reward imbalance was investigated in work conditions, there has been a growing interest in understanding the validity of the ERI model when applied to other social settings such as schools and universities. The ERI questionnaire was developed in Arabic recently to measure ERI among high school teachers. However, little information is available on the validity of the ERI questionnaire in university students. A cross-sectional study was conducted on 833 students in Jordan to measure the validity and reliability of the ERI questionnaire in Arabic among university students. Reliability, as measured by Cronbach’s alpha of the effort, reward, and overcommitment scales, was 0.73, 0.76, and 0.69, respectively, suggesting satisfactory reliability. The factorial structure was explored using principal axis factoring. The results fitted a five-solution model where both the effort and overcommitment were uni-dimensional while the reward scale was three-dimensional with its factors, namely being ‘support’, ‘esteem’, and ‘security’. The solution explained 56% of the variance in the data. The established ERI theory was replicated with excellent validity in this study. The effort-reward ratio in university students was 1.19, which suggests a slight degree of failed reciprocity. The study also investigated the association of effort, reward, overcommitment, and ERI with participants’ demographic factors and self-reported health. ERI was found to be significantly associated with absenteeism (p < 0.0001), past history of failed courses (p=0.03), and poor academic performance (p < 0.001). Moreover, ERI was found to be associated with poor self-reported health among university students (p=0.01). In conclusion, the Arabic ERI questionnaire is reliable and valid for use in measuring effort-reward imbalance in university students in Jordan. The results of this research are important in informing higher education policy in Jordan.Keywords: effort-reward imbalance, factor analysis, validity, self-reported health
Procedia PDF Downloads 1144866 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience
Authors: Ibrahim Suliman Hanaish
Abstract:
Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model
Procedia PDF Downloads 5124865 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis
Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao
Abstract:
Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array
Procedia PDF Downloads 1054864 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal
Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi
Abstract:
This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.Keywords: photonic crystal, FDTD, ring resonator, optical switch
Procedia PDF Downloads 764863 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control
Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha
Abstract:
This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.Keywords: attitude control, flexible satellite, vibration control, disturbance observer
Procedia PDF Downloads 854862 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density
Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita
Abstract:
Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite
Procedia PDF Downloads 1034861 Sundarban as a Buffer against Storm Surge Flooding
Authors: Mohiuddin Sakib, Fatin Nihal, Anisul Haque, Munsur Rahman, Mansur Ali
Abstract:
Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban.Keywords: buffer, Mangrove forest, Sidr, landfall, roughness
Procedia PDF Downloads 3924860 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate
Authors: Gwi Hyun Lee, Mun Soo Na
Abstract:
Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system
Procedia PDF Downloads 2764859 Effect of Submerged Water Jet's Cross Section Shapes on Mixing Length
Authors: Mohsen Solimani Babarsad, Mohammad Rastgoo, Payam Taheri
Abstract:
One of the important applications of hydraulic jets is used for discharge industrial, agricultural and urban wastewater into the rivers or other ambient water to reduce negative effects of pollutant water. Submerged jets due to turbulent condition can mix large amount of dense pollutant water with ambient flow. This study is conducted to investigate the distribution and length of the mixing zone in hydraulic jet's flow field with change in cross section shapes of nozzle. Toward this end, three shapes of cross section (square, circle and rectangular) and three saline densities current with different concentration are considered in a flume with 600 cm as long, 100 cm as high and 150 cm in width. Various discharges were used to evaluate mixing length for a wide range of densimetric Froude numbers, Frd, from 100 to 550 that is defined at the nozzle. Consequently, the circular nozzle, in comparison with other sections, has a densimetric Froude number 11% higher than square nozzle and 26% higher than rectangular nozzle.Keywords: hydraulic jet, mixing zone, densimetric Froude number, nozzle
Procedia PDF Downloads 3614858 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus
Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum
Abstract:
The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis
Procedia PDF Downloads 2804857 Keratin Fiber Fabrication from Biowaste for Biomedical Application
Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh
Abstract:
Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.Keywords: biomaterial, biowaste, fiber, keratin
Procedia PDF Downloads 1914856 Cross-Cultural Conflict Management in Transnational Business Relationships: A Qualitative Study with Top Executives in Chinese, German and Middle Eastern Cases
Authors: Sandra Hartl, Meena Chavan
Abstract:
This paper presents the outcome of a four year Ph.D. research on cross-cultural conflict management in transnational business relationships. An important and complex problem about managing conflicts that arise across cultures in business relationships is investigated, and conflict resolution strategies are identified. This paper particularly focuses on transnational relationships within a Chinese, German and Middle Eastern framework. Unlike many papers on this issue which have been built on experiments with international MBA students, this research provides real-life cases of cross-cultural conflicts which are not easy to capture. Its uniqueness is underpinned as the real case data was gathered by interviewing top executives at management positions in large multinational corporations through a qualitative case study method approach. This paper makes a valuable contribution to the theory of cross-cultural conflicts, and despite the sensitivity, this research primarily presents real-time business data about breaches of contracts between two counterparties engaged in transnational operating organizations. The overarching aim of this research is to identify the degree of significance for the cultural factors and the communication factors embedded in cross-cultural business conflicts. It questions from a cultural perspective what factors lead to the conflicts in each of the cases, what the causes are and the role of culture in identifying effective strategies for resolving international disputes in an increasingly globalized business world. The results of 20 face to face interviews are outlined, which were conducted, recorded, transcribed and then analyzed using the NVIVO qualitative data analysis system. The outcomes make evident that the factors leading to conflicts are broadly organized under seven themes, which are communication, cultural difference, environmental issues, work structures, knowledge and skills, cultural anxiety and personal characteristics. When evaluating the causes of the conflict it is to notice that these are rather multidimensional. Irrespective of the conflict types (relationship or task-based conflict or due to individual personal differences), relationships are almost always an element of all conflicts. Cultural differences, which are a critical factor for conflicts, result from different cultures placing different levels of importance on relationships. Communication issues which are another cause of conflict also reflect different relationships styles favored by different cultures. In identifying effective strategies for solving cross-cultural business conflicts this research identifies that solutions need to consider the national cultures (country specific characteristics), organizational cultures and individual culture, of the persons engaged in the conflict and how these are interlinked to each other. Outcomes identify practical dispute resolution strategies to resolve cross-cultural business conflicts in reference to communication, empathy and training to improve cultural understanding and cultural competence, through the use of mediation. To conclude, the findings of this research will not only add value to academic knowledge of cross-cultural conflict management across transnational businesses but will also add value to numerous cross-border business relationships worldwide. Above all it identifies the influence of cultures and communication and cross-cultural competence in reducing cross-cultural business conflicts in transnational business.Keywords: business conflict, conflict management, cross-cultural communication, dispute resolution
Procedia PDF Downloads 1624855 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances
Authors: Pakorn Uttayopas, Chawalit Kittichaikarn
Abstract:
This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel
Procedia PDF Downloads 2314854 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 2724853 Serum 25-Hydroxyvitamin D Levels and Depression in Persons with Human Immunodeficiency Virus Infection: A Cross-Sectional and Prospective Study
Authors: Kalpana Poudel-Tandukar
Abstract:
Background: Human Immunodeficiency Virus (HIV) infection has been frequently associated with vitamin D deficiency and depression. Vitamin D deficiency increases the risk of depression in people without HIV. We assessed the cross-sectional and prospective associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and depression in a HIV-positive people. Methods: A survey was conducted among 316 HIV-positive people aged 20-60 years residing in Kathmandu, Nepal for a cross-sectional association at baseline, and among 184 participants without depressive symptoms at baseline who responded to both baseline (2010) and follow-up (2011) surveys for prospective association. The competitive protein-binding assay was used to measure 25(OH)D levels and the Beck Depression Inventory-Ia method was used to measure depression, with cut off score 20 or higher. Relationships were assessed using multiple logistic regression analysis with adjustment of potential confounders. Results: The proportion of participants with 25(OH)D level of <20ng/mL, 20-30ng/mL, and >30ng/mL were 83.2%, 15.5%, and 1.3%, respectively. Only four participants with 25(OH)D level of >30ng/mL were excluded in the further analysis. The mean 25(OH)D level in men and women were 15.0ng/mL and 14.4ng/mL, respectively. Twenty six percent of participants (men:23%; women:29%) were depressed. Participants with 25(OH)D level of < 20 ng/mL had a 1.4 fold higher odds of depression in a cross-sectional and 1.3 fold higher odds of depression after 18 months of baseline compared to those with 25(OH)D level of 20-30ng/mL (p=0.40 and p=0.78, respectively). Conclusion: Vitamin D may not have significant impact against depression among HIV-positive people with 25(OH)D level below normal ( > 30ng/mL).Keywords: depression, HIV, Nepal, vitamin D
Procedia PDF Downloads 3304852 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine
Authors: Hisham Elmouazen, Xiaobing Zhang
Abstract:
In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections
Procedia PDF Downloads 714851 Algerian Case Study of Age Effect and Cross Linguistic Influence in Third Language Phonology Acquisition
Authors: Zouleykha Belabbes
Abstract:
Learning foreign languages is sine qua non in the era of globalization, mobility, and communications, which grants access and connectedness to the world. This urgent need is highlighted in monolingual settings, however, in multilingual contexts the case is, to some extent, complicated. In effect, research on bilingualism and multilingualism lead to the issue of Cross Linguistic Influence (CLI) which seeks to explain how and under which conditions prior linguistic knowledge of first language (L1) and / or second language (L2) influences the production, comprehension and development of a third language (L3) or additional language (Ln). Moreover, the issue of age is also one of the persistent topics in the field of language acquisition. This paper aims to scrutinize the effect of age and two previously known languages: Arabic (L1) and French (L2) in acquiring English (L3) phonology in Algerian context. The study consisted of 20 participants of different age range who were presented with recorded samples of English (L3). The findings confirm the results of some previous studies on the issue of Critical Period Hypothesis (CPH) and demonstrate a tendency for the L2 phonological transfer in L3 production at the initial stages of acquisition within young and later learners that for some circumstances diminished as L3 proficiency develop.Keywords: acquisition, age effect, cross linguistic influence, L3 phonology
Procedia PDF Downloads 2354850 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 554849 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece
Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis
Abstract:
Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.Keywords: building sector, energy saving measures, energy upgrading, homer software, renewable energy sources, RETScreen software
Procedia PDF Downloads 226