Search results for: value networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2801

Search results for: value networks

1811 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 243
1810 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
1809 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek

Abstract:

Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 26
1808 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 80
1807 A Molecular Dynamics Study on Intermittent Plasticity and Dislocation Avalanche Emissions in FCC and BCC Crystals

Authors: Javier Varillas, Jorge Alcalá

Abstract:

We investigate dislocation avalanche phenomena in face-centered cubic (FCC) and body-centered cubic (BCC) crystals using massive, large-scale molecular dynamics (MD) simulations. The analysis is focused on the intermittent development of dense dislocation arrangements subjected to uniaxial tensile straining under displacement control. We employ a novel computational scheme that allows us to inject an entangled dislocation structure in periodic MD domains. We assess the emission of plastic bursts (or dislocation avalanches) in terms of the sharp stress drops detected in the stress-strain curve. The plastic activity corresponds to the sporadic operation of specific dislocation glide processes exhibiting quiescent periods between successive avalanche events. We find that the plastic intermittences in our simulations do not overlap in time under sufficiently low strain rates as dissipation operates faster than driving, where the dense dislocation networks evolve through the emission of dislocation avalanche events whose carried slip adheres to self-organized power-law distributions. These findings enable the extension of the slip distributions obtained from strict displacement-controlled micropillar compression experiments towards smaller values of slip size. Our results furnish further understanding upon the development of entangled dislocation networks in metal plasticity, including specific mechanisms of dislocation propagation and annihilation, along with the evolution of specific dislocation populations through dislocation density analyses.

Keywords: dislocations, intermittent plasticity, molecular dynamics, slip distributions

Procedia PDF Downloads 139
1806 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan

Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali

Abstract:

In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.

Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid

Procedia PDF Downloads 482
1805 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare

Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar

Abstract:

Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.

Keywords: aggregation, cipher, homomorphic stream, encryption

Procedia PDF Downloads 260
1804 Preparation and Properties of Self-Healing Polyurethanes Utilizing the Host-Guest Interaction between Cyclodextrin and Adamantane Moieties

Authors: Kaito Sugane, Mitsuhiro Shibata

Abstract:

Self-healing polymers have attracted attention because their physical damage and cracks can be effectively repaired, thereby extending the lifetime of the materials. Self-healing polymers using host-guest interaction have the advantage that they are quickly repaired under mild temperature conditions when compared with self-healing polymer using dynamic covalent bonds such as Diels-Alder (DA)/retro-DA and disulfide metathesis reactions. Especially, it is known that hydrogels utilizing the host-guest interaction between cyclodextrin and various guest molecules are repeatedly self-repaired at room temperature. However, most of the works deal with hydrogels, and little attention has been paid for thermosetting resins as polyurethane, epoxy and unsaturated polyester resins. In this study, polyetherurethane networks (PUN-CD-Ads) incorporating cyclodextrin and adamantane moieties were prepared by the crosslinking reactions of β-cyclodextrin (CD), 1-adamantanol (AdOH), glycerol ethoxylate (GCE) and hexamethylene diisocyanate (HDI), and thermal, mechanical and self-healing properties of the polymer network films were investigated. Our attention was focused on the influences of molar ratio of CD/AdOH, GCE/CD and OH/NCO on the properties. The FT-IR, and gel fraction analysis revealed that the urethanization reaction smoothly progress to form polyurethane networks. When two cut pieces of the films were contacted at the cross-section at room temperature for 30 seconds, the two pieces adhered to produce a self-healed film. Especially, the PUN-CD-Ad prepared at GCE/CD = 5/1, CD/AdOH = 1/1, and OH/NCO = 1/1 film exhibited the highest healing efficiency for tensile strength. Most of the PUN-CD-Ads were successfully self-healed at room temperature.

Keywords: host-guest interaction, network polymer, polyurethane, self-healing

Procedia PDF Downloads 186
1803 Work-Life Balance: A Landscape Mapping of Two Decades of Scholarly Research

Authors: Gertrude I Hewapathirana, Mohamed M. Moustafa, Michel G. Zaitouni

Abstract:

The purposes of this research are: (a) to provide an epistemological and ontological understanding of the WLB theory, practice, and research to illuminate how the WLB evolved between 2000 to 2020 and (b) to analyze peer-reviewed research to identify the gaps, hotspots, underlying dynamics, theoretical and thematic trends, influential authors, research collaborations, geographic networks, and the multidisciplinary nature of the WLB theory to guide future researchers. The research used four-step bibliometric network analysis to explore five research questions. Using keywords such as WLB and associated variants, 1190 peer-reviewed articles were extracted from the Scopus database and transformed to a plain text format for filtering. The analysis was conducted using the R version 4.1 software (R Development Core Team, 2021) and several libraries such as bibliometrics, word cloud, and ggplot2. We used the VOSviewer software (van Eck & Waltman, 2019) for network visualization. The WLB theory has grown into a multifaceted, multidisciplinary field of research. There is a paucity of research between 2000 to 2005 and an exponential growth from 2006 to 2015. The rapid increase of WLB research in the USA, UK, and Australia reflects the increasing workplace stresses due to hyper competitive workplaces, inflexible work systems, and increasing diversity and the emergence of WLB support mechanisms, legal and constitutional mandates to enhance employee and family wellbeing at multilevel social systems. A severe knowledge gap exists due to inadequate publications disseminating the "core" WLB research. "Locally-centralized-globally-discrete" collaboration among researchers indicates a "North-South" divide between developed and developing nations. A shortage in WLB research in developing nations and a lack of research collaboration hinder a global understanding of the WLB as a universal phenomenon. Policymakers and practitioners can use the findings to initiate supporting policies, and innovative work systems. The boundary expansion of the WLB concepts, categories, relations, and properties would facilitate researchers/theoreticians to test a variety of new dimensions. This is the most comprehensive WLB landscape analysis that reveals emerging trends, concepts, networks, underlying dynamics, gaps, and growing theoretical and disciplinary boundaries. It portrays the WLB as a universal theory.

Keywords: work-life balance, co-citation networks; keyword co-occurrence network, bibliometric analysis

Procedia PDF Downloads 196
1802 Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 455
1801 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 67
1800 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
1799 A Review on Cloud Computing and Internet of Things

Authors: Sahar S. Tabrizi, Dogan Ibrahim

Abstract:

Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.

Keywords: cloud computing, cloud systems, cloud services, IaaS, PaaS, SaaS

Procedia PDF Downloads 233
1798 Working Between Human and Non-Human Nature: Using Labour as a Tool to Capture the Transformations of Planetary Life

Authors: Ellen Kirkpatrick

Abstract:

Deforestation, toxification, and loss of environmental habitats, accompanied by expanding production and urbanization, are visibly altering planetary life. This is bringing humans and non-human nature into closer contact, resulting in the emergence of infectious diseases such as the Covid-19 virus which, while zoonotic in origin, spread through market relations and networks of local and global production. However, while the pandemic sharply illuminated the role of labour within social transformations, the question remains about the role of labour in transforming ecological relations. Drawing on a historical materialist approach, this paper explores the emergence and transmission of the COVID-19 virus through the Marxist conceptualization of metabolic rift. This allows for a perspective of human and non-human nature, which is in constant motion and dialectical. This negotiates distinctions and binaries between them as humans and non-human nature are taken to mutually constrain, enable and constitute one another. This is particularly significant when considering the ongoing transformations of a climate-changing world and the corresponding effects on social life. To do this, this paper empirically focuses on the Huanan Seafood Wholesale Market in Wuhan, China, where the COVID-19 virus was first detected. It examines how the virus jumped from non-human animals to humans through concrete production operations locally before traveling globally through networks of abstract market relations based on the logic of circulation, trade and exchange. As a mediating relation between human and non-human nature, labour is an analytical tool that can create a dialogue between the concrete and the abstract, as well as the local and global.

Keywords: Marxism, social reproduction, metabolic rift, labour

Procedia PDF Downloads 21
1797 Collaboration versus Cooperation: Grassroots Activism in Divided Cities and Communication Networks

Authors: R. Barbour

Abstract:

Peace-building organisations act as a network of information for communities. Through fieldwork, it was highlighted that grassroots organisations and activists may cooperate with each other in their actions of peace-building; however, they would not collaborate. Within two divided societies; Nicosia in Cyprus and Jerusalem in Israel, there is a distinction made by organisations and activists with regards to activities being more ‘co-operative’ than ‘collaborative’. This theme became apparent when having informal conversations and semi-structured interviews with various members of the activist communities. This idea needs further exploration as these distinctions could impact upon the efficiency of peacebuilding activities within divided societies. Civil societies within divided landscapes, both physically and socially, play an important role in conflict resolution. How organisations and activists interact with each other has the possibility to be very influential with regards to peacebuilding activities. Working together sets a positive example for divided communities. Cooperation may be considered a primary level of interaction between CSOs. Therefore, at the beginning of a working relationship, organisations cooperate over basic agendas, parallel power structures and focus, which led to the same objective. Over time, in some instances, due to varying factors such as funding, more trust and understanding within the relationship, it could be seen that processes progressed to more collaborative ways. It is evident to see that NGOs and activist groups are highly independent and focus on their own agendas before coming together over shared issues. At this time, there appears to be more collaboration in Nicosia among CSOs and activists than Jerusalem. The aims and objectives of agendas also influence how organisations work together. In recent years, Nicosia, and Cyprus in general, have perhaps changed their focus from peace-building initiatives to more environmental issues which have become new-age reconciliation topics. Civil society does not automatically indicate like-minded organisations however solidarity within social groups can create ties that bring people and resources together. In unequal societies, such as those in Nicosia and Jerusalem, it is these ties that cut across groups and are essential for social cohesion. Societies are a collection of social groups; individuals who have come together over common beliefs. These groups in turn shape the identities and determine the values and structures within societies. At many different levels and stages, social groups work together through cooperation and collaboration. These structures in turn have the capabilities to open up networks to less powerful or excluded groups, with the aim to produce social cohesion which may contribute social stability and economic welfare over any extended period.

Keywords: collaboration, cooperation, grassroots activism, networks of communication

Procedia PDF Downloads 158
1796 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
1795 Making Social Accountability Initiatives Work in the Performance of Local Self-Governing Institutions: District-Level Analysis in Rural Assam, India

Authors: Pankaj Kumar Kalita

Abstract:

Ineffectiveness of formal institutional mechanisms such as official audit to improve public service delivery has been a serious concern to scholars working on governance reforms in developing countries. Scholars argue that public service delivery in local self-governing institutions can be improved through application of informal mechanisms such as social accountability. Social accountability has been reinforced with the engagement of citizens and civic organizations in the process of service delivery to reduce the governance gap in developing countries. However, there are challenges that may impede the scope of establishing social accountability initiatives in the performance of local self-governing institutions. This study makes an attempt to investigate the factors that may impede the scope of establishing social accountability, particularly in culturally heterogeneous societies like India. While analyzing the implementation of two rural development schemes by Panchayats, the local self-governing institutions functioning in rural Assam in India, this study argues that the scope of establishing social accountability in the performance of local self-governing institutions, particularly in culturally heterogeneous societies in developing countries will be impeded by the absence of inter-caste and inter-religion networks. Data has been collected from five selected districts of Assam using in-depth interview method and survey method. The study further contributes to the debates on 'good governance' and citizen-centric approaches in developing countries.

Keywords: citizen engagement, local self-governing institutions, networks, social accountability

Procedia PDF Downloads 319
1794 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 14
1793 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 496
1792 Internet Protocol Television: A Research Study of Undergraduate Students Analyze the Effects

Authors: Sabri Serkan Gulluoglu

Abstract:

The study is aimed at examining the effects of internet marketing with IPTV on human beings. Internet marketing with IPTV is emerging as an integral part of business strategies in today’s technologically advanced world and the business activities all over the world are influences with the emergence of this modern marketing tool. As the population of the Internet and on-line users’ increases, new research issues have arisen concerning the demographics and psychographics of the on-line user and the opportunities for a product or service. In recent years, we have seen a tendency of various services converging to the ubiquitous Internet Protocol based networks. Besides traditional Internet applications such as web browsing, email, file transferring, and so forth, new applications have been developed to replace old communication networks. IPTV is one of the solutions. In the future, we expect a single network, the IP network, to provide services that have been carried by different networks today. For finding some important effects of a video based technology market web site on internet, we determine to apply a questionnaire on university students. Recently some researches shows that in Turkey the age of people 20 to 24 use internet when they buy some electronic devices such as cell phones, computers, etc. In questionnaire there are ten categorized questions to evaluate the effects of IPTV when shopping. There were selected 30 students who are filling the question form after watching an IPTV channel video for 10 minutes. This sample IPTV channel is “buy.com”, it look like an e-commerce site with an integrated IPTV channel on. The questionnaire for the survey is constructed by using the Likert scale that is a bipolar scaling method used to measure either positive or negative response to a statement (Likert, R) it is a common system that is used is the surveys. By following the Likert Scale “the respondents are asked to indicate their degree of agreement with the statement or any kind of subjective or objective evaluation of the statement. Traditionally a five-point scale is used under this methodology”. For this study also the five point scale system is used and the respondents were asked to express their opinions about the given statement by picking the answer from the given 5 options: “Strongly disagree, Disagree, Neither agree Nor disagree, Agree and Strongly agree”. These points were also rates from 1-5 (Strongly disagree, Disagree, Neither disagree Nor agree, Agree, Strongly agree). On the basis of the data gathered from the questionnaire some results are drawn in order to get the figures and graphical representation of the study results that can demonstrate the outcomes of the research clearly.

Keywords: IPTV, internet marketing, online, e-commerce, video based technology

Procedia PDF Downloads 240
1791 Contact Zones and Fashion Hubs: From Circular Economy to Circular Neighbourhoods

Authors: Tiziana Ferrero-Regis, Marissa Lindquist

Abstract:

Circular Economy (CE) is increasingly seen as the reorganisation of production and consumption, and cities are acknowledged as the sources of many ecological and social problems; at the same time, they can be re-imagined through an ecologically and socially resilient future. The concept of the CE has received pointed critiques for its techno-deterministic orientation, focus on science and transformation by the policy. At the heart of our local re-imagining of the CE into circularity through contact zones there is the acknowledgment of collective, spontaneous and shared imaginations of alternative and sustainable futures through the creation of networks of community initiatives that are transformative, creating opportunities that simultaneously make cities rich and enrich humans. This paper presents a mapping project of the fashion and textile ecosystem in Brisbane, Queensland, Australia. Brisbane is currently the most aspirational city in Australia, as its population growth rate is the highest in the country. Yet, Brisbane is considered the least “fashion city” in the country. In contrast, the project revealed a greatly enhanced picture of distinct fashion and textile clusters across greater Brisbane and the adjacency of key services that may act to consolidate CE community contact zones. Clusters to the north of Brisbane and several locales to the south are zones of a greater mix between public/social amenities, walkable zones and local transport networks with educational precincts, community hubs, concentration of small enterprises, designers, artisans and waste recovery centers that will help to establish knowledge of key infrastructure networks that will support enmeshing these zones together. The paper presents two case studies of independent designers who work on new and re-designed clothing through recovering pre-consumer textiles and that operate from within creative precincts. The first case is designer Nelson Molloy, who recently returned to the inner city suburb of West End with their Chasing Zero Design project. The area was known in the 1980s and 1990s for its alternative lifestyle with creative independent production, thrifty clothing shops, alternative fashion and a socialist agenda. After 30 years of progressive gentrification of the suburb, which has dislocated many of the artists, designers and artisans, West End is seeing the return and amplification of clusters of artisans, artists, designers and architects. The other case study is Practice Studio, located in a new zone of creative growth, Bowen Hills, north of the CBD. Practice Studio combines retail with a workroom, offers repair and remaking services, becoming a point of reference for young and emerging Australian designers and artists. The paper demonstrates the spatial politics of the CE and the way in which new cultural capital is produced thanks to cultural specificities and resources. It argues for the recognition of contact zones that are created by local actors, communities and knowledge networks, whose grass-roots agency is fundamental for the co-production of CE’s systems of local governance.

Keywords: contact zones, circular citities, fashion and textiles, circular neighbourhoods, australia

Procedia PDF Downloads 99
1790 How Virtualization, Decentralization, and Network-Building Change the Manufacturing Landscape: An Industry 4.0 Perspective

Authors: Malte Brettel, Niklas Friederichsen, Michael Keller, Marius Rosenberg

Abstract:

The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices.

Keywords: Industry 4.0., mass customization, production networks, virtual process-chain

Procedia PDF Downloads 277
1789 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM

Authors: J. C. Hoyos, J. Zambrano Nájera

Abstract:

Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.

Keywords: land cover changes, storm sewer system, urban hydrology, urban planning

Procedia PDF Downloads 261
1788 Visual Simulation for the Relationship of Urban Fabric

Authors: Ting-Yu Lin, Han-Liang Lin

Abstract:

This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing.

Keywords: Cityengine, urban fabric, urban morphology, visual simulation

Procedia PDF Downloads 298
1787 The Impact of Quality Cost on Revenue Sharing in Supply Chain Management

Authors: Fayza M. Obied-Allah

Abstract:

Customer’ needs, quality, and value creation while reducing costs through supply chain management provides challenges and opportunities for companies and researchers. In the light of these challenges, modern ideas must contribute to counter these challenges and exploit opportunities. Perhaps this paper will be one of these contributions. This paper discusses the impact of the quality cost on revenue sharing as a most important incentive to configure business networks. No doubt that the costs directly affect the size of income generated by a business network, so this paper investigates the impact of quality costs on business networks revenue, and their impact on the decision to participate the revenue among the companies in the supply chain. This paper develops the quality cost approach to align with the modern era, the developed model includes five categories besides the well-known four categories (namely prevention costs, appraisal costs, internal failure costs, and external failure costs), a new category has been developed in this research as a new vision of the relationship between quality costs and innovations of industry. This new category is Recycle Cost. This paper is organized into six sections, Section I shows quality costs overview in the supply chain. Section II discusses revenue sharing between the parties in supply chain. Section III investigates the impact of quality costs in revenue sharing decision between partners in supply chain. The fourth section includes survey study and presents statistical results. Section V discusses the results and shows future opportunities for research. Finally, Section VI summarizes the theoretical and practical results of this paper.

Keywords: quality cost, recycle cost, revenue sharing, supply chain management

Procedia PDF Downloads 443
1786 Social Network Roles in Organizations: Influencers, Bridges, and Soloists

Authors: Sofia Dokuka, Liz Lockhart, Alex Furman

Abstract:

Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.

Keywords: organizational network analysis, social roles, influencer, bridge, soloist

Procedia PDF Downloads 104
1785 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
1784 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 47
1783 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
1782 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: millimetre wavebands, SHF band, SINR, cost benefit analysis, 5G

Procedia PDF Downloads 141