Search results for: Hull recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1754

Search results for: Hull recognition

764 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 534
763 Towards Logical Inference for the Arabic Question-Answering

Authors: Wided Bakari, Patrice Bellot, Omar Trigui, Mahmoud Neji

Abstract:

This article constitutes an opening to think of the modeling and analysis of Arabic texts in the context of a question-answer system. It is a question of exceeding the traditional approaches focused on morphosyntactic approaches. Furthermore, we present a new approach that analyze a text in order to extract correct answers then transform it to logical predicates. In addition, we would like to represent different levels of information within a text to answer a question and choose an answer among several proposed. To do so, we transform both the question and the text into logical forms. Then, we try to recognize all entailment between them. The results of recognizing the entailment are a set of text sentences that can implicate the user’s question. Our work is now concentrated on an implementation step in order to develop a system of question-answering in Arabic using techniques to recognize textual implications. In this context, the extraction of text features (keywords, named entities, and relationships that link them) is actually considered the first step in our process of text modeling. The second one is the use of techniques of textual implication that relies on the notion of inference and logic representation to extract candidate answers. The last step is the extraction and selection of the desired answer.

Keywords: NLP, Arabic language, question-answering, recognition text entailment, logic forms

Procedia PDF Downloads 342
762 Familiarity with Intercultural Conflicts and Global Work Performance: Testing a Theory of Recognition Primed Decision-Making

Authors: Thomas Rockstuhl, Kok Yee Ng, Guido Gianasso, Soon Ang

Abstract:

Two meta-analyses show that intercultural experience is not related to intercultural adaptation or performance in international assignments. These findings have prompted calls for a deeper grounding of research on international experience in the phenomenon of global work. Two issues, in particular, may limit current understanding of the relationship between international experience and global work performance. First, intercultural experience is too broad a construct that may not sufficiently capture the essence of global work, which to a large part involves sensemaking and managing intercultural conflicts. Second, the psychological mechanisms through which intercultural experience affects performance remains under-explored, resulting in a poor understanding of how experience is translated into learning and performance outcomes. Drawing on recognition primed decision-making (RPD) research, the current study advances a cognitive processing model to highlight the importance of intercultural conflict familiarity. Compared to intercultural experience, intercultural conflict familiarity is a more targeted construct that captures individuals’ previous exposure to dealing with intercultural conflicts. Drawing on RPD theory, we argue that individuals’ intercultural conflict familiarity enhances their ability to make accurate judgments and generate effective responses when intercultural conflicts arise. In turn, the ability to make accurate situation judgements and effective situation responses is an important predictor of global work performance. A relocation program within a multinational enterprise provided the context to test these hypotheses using a time-lagged, multi-source field study. Participants were 165 employees (46% female; with an average of 5 years of global work experience) from 42 countries who relocated from country to regional offices as part a global restructuring program. Within the first two weeks of transfer to the regional office, employees completed measures of their familiarity with intercultural conflicts, cultural intelligence, cognitive ability, and demographic information. They also completed an intercultural situational judgment test (iSJT) to assess their situation judgment and situation response. The iSJT comprised four validated multimedia vignettes of challenging intercultural work conflicts and prompted employees to provide protocols of their situation judgment and situation response. Two research assistants, trained in intercultural management but blind to the study hypotheses, coded the quality of employee’s situation judgment and situation response. Three months later, supervisors rated employees’ global work performance. Results using multilevel modeling (vignettes nested within employees) support the hypotheses that greater familiarity with intercultural conflicts is positively associated with better situation judgment, and that situation judgment mediates the effect of intercultural familiarity on situation response quality. Also, aggregated situation judgment and situation response quality both predicted supervisor-rated global work performance. Theoretically, our findings highlight the important but under-explored role of familiarity with intercultural conflicts; a shift in attention from the general nature of international experience assessed in terms of number and length of overseas assignments. Also, our cognitive approach premised on RPD theory offers a new theoretical lens to understand the psychological mechanisms through which intercultural conflict familiarity affects global work performance. Third, and importantly, our study contributes to the global talent identification literature by demonstrating that the cognitive processes engaged in resolving intercultural conflicts predict actual performance in the global workplace.

Keywords: intercultural conflict familiarity, job performance, judgment and decision making, situational judgment test

Procedia PDF Downloads 179
761 Conceptual Model Providing More Information on the Contact Situation between Crime Victim and the Police

Authors: M. Inzunza

Abstract:

In contemporary society, victims of crime has been given more recognition, which have contributed to advancing the knowledge on the effects of crime. There exists a complexity of who gets the status of victim and that the typology of good versus bad can interfere with the contact situation of the victim with the police. The aim of this study is to identify the most central areas affecting the contact situation between crime victims and the police to develop a conceptual model to be useful empirically. By considering previously documented problem areas and different theoretical domains, a conceptual model has been developed. Preliminary findings suggest that an area that should be given attention is to get a better understanding of the victim, not only in terms of demographics but also in terms of risk behavior and social network. This area has been considered to influence the status of the crime victim. Another domain of value is the type of crime and the context of the incident in more detail. The police officer approach style in the contact situation is also a pertinent area that is influenced by how the police based victim services are organized and how individual police officers are suited for the mission. Suitability includes constructs from empathy models adapted to the police context and especially focusing on sub-constructs such as perspective taking. Discussion will focus on how these findings can be operationalized in practice and how they are used in ongoing empirical studies.

Keywords: empathy, perspective taking, police contact, victim of crime

Procedia PDF Downloads 138
760 Morphology, Chromosome Numbers and Molecular Evidences of Three New Species of Begonia Section Baryandra (Begoniaceae) from Panay Island, Philippines

Authors: Rosario Rivera Rubite, Ching-I Peng, Che-Wei Lin, Mark Hughes, Yoshiko Kono, Kuo-Fang Chung

Abstract:

The flora of Panay Island is under-collected compared with the other islands of the Philippines. In a joint expedition to the island, botanists from Taiwan and the Philippines found three unknown Begonia and compared them with potentially allied species. The three species are clearly assignable to Begonia section Baryandra which is largely endemic to the Philippines. Studies of literature, herbarium specimens, and living plants support the recognition of the three new species: Begonia culasiensis, Begonia merrilliana, and Begonia sykakiengii. Somatic chromosomes at metaphase were determined to be 2n=30 for B. culasiensis and 2n=28 for both B. merrilliana and B. sykakiengii, which are congruent with those of most species in sect. Baryandra. Molecular phylogenetic evidence is consistent with B. culasiensis being a relict from the late Miocene, and with B. merrilliana and B. sykakiengii being younger species of Pleistocene origin. The continuing discovery of endemic Philippine species means the remaining fragments of both primary and secondary native vegetation in the archipelago are of increasing value in terms of natural capital. A secure future for the species could be realized through ex-situ conservation collections and raising awareness with community groups.

Keywords: conservation, endemic , herbarium , limestone, phylogenetics, taxonomy

Procedia PDF Downloads 217
759 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation

Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang

Abstract:

Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart

Procedia PDF Downloads 283
758 An Exploratory Survey Questionnaire to Understand What Emotions Are Important and Difficult to Communicate for People with Dysarthria and Their Methodology of Communicating

Authors: Lubna Alhinti, Heidi Christensen, Stuart Cunningham

Abstract:

People with speech disorders may rely on augmentative and alternative communication (AAC) technologies to help them communicate. However, the limitations of the current AAC technologies act as barriers to the optimal use of these technologies in daily communication settings. The ability to communicate effectively relies on a number of factors that are not limited to the intelligibility of the spoken words. In fact, non-verbal cues play a critical role in the correct comprehension of messages and having to rely on verbal communication only, as is the case with current AAC technology, may contribute to problems in communication. This is especially true for people’s ability to express their feelings and emotions, which are communicated to a large part through non-verbal cues. This paper focuses on understanding more about the non-verbal communication ability of people with dysarthria, with the overarching aim of this research being to improve AAC technology by allowing people with dysarthria to better communicate emotions. Preliminary survey results are presented that gives an understanding of how people with dysarthria convey emotions, what emotions that are important for them to get across, what emotions that are difficult for them to convey, and whether there is a difference in communicating emotions when speaking to familiar versus unfamiliar people.

Keywords: alternative and augmentative communication technology, dysarthria, speech emotion recognition, VIVOCA

Procedia PDF Downloads 164
757 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo

Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves

Abstract:

The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.

Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo

Procedia PDF Downloads 294
756 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 409
755 A Perceptive Study on Oviposition Behavior and Selection of Host Plant for Egg Laying in Schistocerca gregaria

Authors: Riffat Sultana, Ahmed Ali Samejo

Abstract:

Desert Locust is a critical pest of crop and non-crop plants throughout the old world including Pakistan. Geographically, this pest invades 31 million km2 in about 60 countries during the gregarious phase which may bring calamity. The present study is carried out in order to conduct field observations on oviposition behavior from Thar Desert, Pakistan. Females preferred loose soil for oviposition rather than packed or hard soil. The depth of egg pods inside the soil was measured up to 8.996±1.40 cm, and duration of egg laying was measured up to 105.9±26.4 min. Besides this, an insightful recognition has been made that the solitary females oviposited predominantly in the vicinity of pearl millet (Pennisetum glaucum) and guar or cluster bean (Cyamopsis tetragonoloba) crops in cultivated fields while in uncultivated land preferred the surroundings of bekar grass (Indigofera caerulea) and snow bush (Aerva javanica). It was also observed that nymphs preferred to feed on these host plants. Furthermore, experimental outcomes indicated that gravid females oviposited on the bottom of perforated plastic cages while, they did not find suitable soil for oviposition.

Keywords: calamity, cultivated fields, desert locust, host plants, oviposition behavior

Procedia PDF Downloads 191
754 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 67
753 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine

Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li

Abstract:

Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.

Keywords: false alarm, fault diagnosis, SVM, k-means, BIT

Procedia PDF Downloads 155
752 The Role of College Teachers’ in Identifying Attention Deficit Hyperactivity Disorder in Students

Authors: Hargunjeet Shergill, Palwinder Singh

Abstract:

The present paper analyzes the lack of teachers' awareness and knowledge regarding the Attention Deficit Hyperactivity Disorder in the college students. Attention deficit hyperactivity disorder causes individuals to consistently display extreme inattention, impulsivity and in many cases hyperactivity as a result of the physiological differences of the brain. Teachers have a formative influence on their students and can play a key role in identifying and supporting students with Attention Deficit/Hyperactivity Disorder (ADHD). Despite the pervasiveness and salience of this disorder, educators at college continue to labor under a number of misconceptions about the nature of ADHD. In order to fulfill this important role, it is imperative for teachers to have explicit knowledge about this disorder. ADHD in college students remains the most under-recognized and undertreated mental health condition. The overall aim of this study is to investigate teachers’ knowledge and misconceptions of ADHD with a particular focus on recognition, assessment and management of ADHD in adult college students. It designed to assess the college teachers' knowledge, opinions, and experience related to the diagnosis of attention-deficit/hyperactivity disorder (ADHD) and by maintaining open lines of communication with the students and understanding some key elements that can affect students’ overall growth and ability. The discussion focuses on the value of the role of teachers and their relationship with each college student dealing with ADHD.

Keywords: attention deficit hyperactivity disorder, development of ADHD, diagnostic criteria, role of teachers

Procedia PDF Downloads 216
751 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 184
750 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 155
749 The Greek Theatre in Australia Until 1950

Authors: Papazafeiropoulou Olga

Abstract:

The first Greek expatriates created centers of culture in Australia from the beginning of the 19th century, in the large urban centers of the cities (Sydney, Melbourne, Brisbane, Adelaide, Perth). They created community theater according to their cultural standards, their socio-spiritual progress and development and their relationship with theatrical creation. At the same time, the Greek immigrants of the small towns and, especially of NSW, created their own temples of art, rebuilding theater buildings (theatres and cinemas), many of which are preserved to this day. Hellenism in Australia operated in the field of entertainment, reflecting the currents of the time and the global spread of mechanical developments. The Australian-born young people of the parish, as well as pioneering expatriates joined the theater and cinematographic events of Australia. They mobilized beyond the narrow confines of the parish, gaining recognition and projecting Hellenism to the Australian establishment. G. Paizis (A. Haggard), Dimitrios Ioannidis, Stelios Saligaros, Angela Parselli, Sofia Pergamali, Raoul Kardamatis, Adam Tavlaridis, John Lemonne, Rudy Ricco, Artemis Linou, distinguished themselves by writing their names in the history of Australian theater, as they served consequently the theatrical process, elevating the sentiment of the expatriate during the early years of its settlement in the Australian Commonwealth until 1950.

Keywords: greeks, commubity, australia, theatre

Procedia PDF Downloads 68
748 Towards an Understanding of Social Capital in an Online Community of Filipino Music Artists

Authors: Jerome V. Cleofas

Abstract:

Cyberspace has become a more viable arena for budding artists to share musical acts through digital forms. The increasing relevance of online communities has attracted scholars from various fields demonstrating its influence on social capital. This paper extends this understanding of social capital among Filipino music artists belonging to the SoundCloud Philippines Facebook Group. The study makes use of various qualitative data obtained from key-informant interviews and participant observation of online and physical encounters, analyzed using the case study approach. Soundcloud Philippines has over seven-hundred members and is composed of Filipino singers, instrumentalists, composers, arrangers, producers, multimedia artists, and event managers. Group interactions are a mix of online encounters based on Facebook and SoundCloud and physical encounters through meet-ups and events. Benefits reaped from the community are informational, technical, instrumental, promotional, motivational, and social support. Under the guidance of online group administrators, collaborative activities such as music productions, concerts and events transpire. Most conflicts and problems arising are resolved peacefully. Social capital in SoundCloud Philippines is mobilized through recognition, respect and reciprocity.

Keywords: Facebook, music artists, online communities, social capital

Procedia PDF Downloads 319
747 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 172
746 Rejuvenating Cultural Energy: Forging Pathways to Alternative Ecological and Development Paradigms

Authors: Aldrin R. Logdat

Abstract:

The insights and wisdom of the Alangan Mangyans offer valuable guidance for developing alternative ecological and development frameworks. Their reverence for the sacredness of the land, rooted in their traditional cosmology, guides their harmonious relationship with nature. Through their practice of swidden farming, ecosystem preservation takes precedence as they carefully manage agricultural activities and allow for forest regeneration. This approach aligns with natural processes, reflecting their profound understanding of the natural world. Similar to early advocates like Aldo Leopold, the emphasis is on shifting our perception of land from a commodity to a community. The indigenous wisdom of the Alangan Mangyans provides practical and sustainable approaches to preserving the interdependence of the biotic community and ecosystems. By integrating their cultural heritage, we can transcend the prevailing anthropocentric mindset and foster a meaningful and sustainable connection with nature. The revitalization of cultural energy and the embrace of alternative frameworks require learning from indigenous peoples like the Alangan Mangyans, where reverence for the land and the recognition of the interconnectedness between humanity and nature are prioritized. This paves the way for a future where harmony with nature and the well-being of the Earth community prevail.

Keywords: Alangan Mangyans, ecological frameworks, sacredness of the land, cultural energy

Procedia PDF Downloads 104
745 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
744 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir

Authors: H. Shafaattalab Dehghani, H. R. Zarei

Abstract:

The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.

Keywords: bell spring, Karst, Daryan Dam, submerged

Procedia PDF Downloads 274
743 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform

Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis

Abstract:

For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.

Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring

Procedia PDF Downloads 139
742 Corporate Social Responsibility in an Experimental Market

Authors: Nikolaos Georgantzis, Efi Vasileiou

Abstract:

We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy entails a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.

Keywords: corporate social responsibility, energy savings, public good, experiments, vertical differentiation, altruism

Procedia PDF Downloads 257
741 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis

Authors: Farzad Khajavi

Abstract:

Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.

Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction

Procedia PDF Downloads 208
740 Francophone University Students' Attitudes Towards English Accents in Cameroon

Authors: Eric Agrie Ambele

Abstract:

The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.

Keywords: teaching pronunciation, English accents, Francophone learners, attitudes

Procedia PDF Downloads 197
739 Commodification of the Chinese Language: Investigating Language Ideology in the Chinese Complementary Schools’ Online Discourse

Authors: Yuying Liu

Abstract:

Despite the increasing popularity of Chinese and the recognition of the growing commodifying ideology of Chinese language in many contexts (Liu and Gao, 2020; Guo, Shin and Shen 2020), the ideological orientations of the Chinese diaspora community towards the Chinese language remain under-researched. This research contributes seeks to bridge this gap by investigating the micro-level language ideologies embedded in the Chinese complementary schools in the Republic of Ireland. Informed by Ruíz’s (1984) metaphorical representations of language, 11 Chinese complementary schools’ websites were analysed as discursive texts that signal the language policy and ideology to prospective learners and parents were analysed. The results of the analysis suggest that a move from a portrayal of Chinese as linked to student heritage identity, to the commodification of linguistic and cultural diversity, is evident. It denotes the growing commodifying ideology among the Chinese complementary schools in the Republic of Ireland. The changing profile of the complementary school, from serving an ethnical community to teaching Chinese as a foreign language for the wider community, indicates the possibility of creating the a positive synergy between the Complementary school and the mainstream education. This study contributes to the wider discussions of language ideology and language planning, with regards to modern language learning and heritage language maintenance.

Keywords: the Chinese language;, Chinese as heritage language, Chinese as foreign language, Chinese community schools

Procedia PDF Downloads 136
738 Design of a Real Time Heart Sounds Recognition System

Authors: Omer Abdalla Ishag, Magdi Baker Amien

Abstract:

Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.

Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform

Procedia PDF Downloads 446
737 Comparing Image Processing and AI Techniques for Disease Detection in Plants

Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller

Abstract:

Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.

Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation

Procedia PDF Downloads 379
736 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 881
735 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471