Search results for: support vector machines (SVM)
7286 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis
Procedia PDF Downloads 4627285 On an Approach for Rule Generation in Association Rule Mining
Authors: B. Chandra
Abstract:
In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.Keywords: knowledge discovery, association rule mining, antecedent support, rule generation
Procedia PDF Downloads 3247284 An Investigation of Crop Diversity’s Impact on Income Risk of Selected Crops
Authors: Saeed Yazdani, Sima Mohamadi Amidabadi, Amir Mohamadi Nejad, Farahnaz Nekoofar
Abstract:
As a result of uncertainty and doubts about the quantity of agricultural products, greater significance has been attached to risk management in the agricultural sector. Normally, farmers seek to minimize risks, and crop diversity has always been a means to reduce risk. The study at hand seeks to explore the long-term impact of crop diversity on income risk reduction. The timeframe of the study is 1998 to 2018. Initially, the Herfindahl index was used to estimate crop diversity in different periods, and next, the Hodrick-Prescott filter was applied to estimate income risk both in nominal and real terms. Finally, using the Vector Error Correction Model (VECM), the long-term impact of crop diversity on two modes of risk for the farmer's income has been estimated. Given the long-term pattern’s results, it is evident that in the long-run, crop diversity can reduce income fluctuations in two nominal and real terms. Moreover, results showed that in case the fluctuation shock affects the agricultural income in the short run, to balance out the shock in nominal and real terms, 4 and 3 cycles are needed respectively. In other words, in each cycle, 25% and 33% of the shock impact can be removed, respectively. Thus, as the results of the error correction coefficient showed, policies need to be put in place to prevent income shocks. In case of a shock, they need to be balanced out in a four-year period, taking inflation into account, and in a three-year period irrespective of the inflation and reparative policies such as insurance services should be developed.Keywords: risk, long-term model, Herfindahl index, time series model, vector error correction model
Procedia PDF Downloads 247283 Role of Adaptive Support Ventilation in Weaning of COPD Patients
Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi
Abstract:
Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)
Procedia PDF Downloads 3907282 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images
Procedia PDF Downloads 2187281 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 1007280 A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England
Authors: Steve Fish, Chris Lambert
Abstract:
Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.Keywords: regional business support, rural business support, university-industry collaboration, collaborative R&D, SMEs, knowledge exchange
Procedia PDF Downloads 1217279 Support for and Participation in 'Spontaneous' Mass Protest in Iceland: The Moderating Effects of Biographical Availability, Critical Mass, and Social Embeddedness
Authors: Jon Gunnar Bernburg
Abstract:
The present study addresses a topic that is fundamental to social movement theory, namely, the contingent link between movement support and movement participation. Usually, only a small fraction of those who agree with the cause of a social movement is mobilized into participating in it (a pattern sometimes referred to as 'the collective action problem'). However, historical moments sometimes emerge when many supporters become mobilized to participate in the movement, greatly enhancing the chance of movement success. By studying a case in point, this paper addresses the limited work on how support and participation are related at such critical moments. Specifically, the paper examines the association between supporting and participating in a huge 'pro-democracy' protest in Iceland in April 2016, in the wake of the global Panama Papers scandal. Organized via social media by only a handful of activists, but supported by a majority of Icelanders, the protest attracted about a fourth of the urban population, leading to a snap election and government change. Surveying Iceland’s urban population, this paper tests hypotheses about the processes mobilizing supporters to participate in the protest. The findings reveal how variables derived from the theories of biographical availability (males vs. females, working class vs. professionals), critical mass (expectations, prior protest success), and social embeddedness (close ties with protesters) moderate the association between protest support and participation. The study helps to account for one of the largest protests in Iceland’s history while contributing to the theory about how historical contexts shape the behavior of movement supporters.Keywords: Iceland, crisis, protest support vs. participation, theories of mass mobilization
Procedia PDF Downloads 2367278 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support
Authors: Saima Shafiq, Najma Iqbal Malik
Abstract:
This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.Keywords: perceived stigma, perception of burden, psychological distress, perceived social support
Procedia PDF Downloads 2137277 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3487276 Effective Coaching for Teachers of English Language Learners: A Gap Analysis Framework
Authors: Armando T. Zúñiga
Abstract:
As the number of English Language Learners (ELLs) in public schools continues to grow, so does the achievement gap between ELLs and other student populations. In an effort to support classroom teachers with effective instructional strategies for this student population, many districts have created instructional coaching positions specifically to support classroom teachers of ELLs—ELL Teachers on Special Assignment (ELL TOSAs). This study employed a gap analysis framework to the ELL TOSA professional support program in one California school district to examine knowledge, motivation, and organizational influences (KMO) on the ELL TOSAs’ goal of supporting classroom teachers of ELLs. Three themes emerged as a result of data analysis. First, there was evidence to illustrate the interaction between knowledge and the organization. Data from ELL TOSAs indicated an understanding of the role that collaboration plays in coaching and how to operationalize it in their support of teachers. Further, all of the ELL TOSAs indicated they have received professional development on effective strategies for instructional coaching. Additionally, a large percentage of the ELL TOSAs indicated a knowledge of modeling as an effective coaching practice. Accordingly, all of the ELL TOSAs indicated that they had knowledge of feedback as an effective coaching strategy. However, there was not sufficient evidence to support that they learned the latter two strategies through professional development. A second theme surfaced as there was evidence to illustrate an interaction between motivation and the organization. Some ELL TOSAs indicated that their sense of self-efficacy was affected by conflicting roles and expectations for the job. Most of the ELL TOSAs indicated that their sense of self-efficacy was affected by an increased workload brought about by fiscal decision making. Finally, there was evidence illustrating the interaction between the organization and motivation. The majority of the of ELL TOSAs indicated that there is confusion about how their roles are perceived, leaving the ELL TOSAs to feel that their actions did not contribute to instructional change. In conclusion, five research-based recommendations to support ELL TOSA goal attainment and considerations for future research on instructional coaches for classroom teachers of ELLs are provided.Keywords: English language development, English language acquisition, language and leadership, language coaching, English language learners, second language acquisition
Procedia PDF Downloads 1017275 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5047274 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 737273 Leadership, A Toll to Support Innovations and Inventive Education at Universities
Authors: Peter Balco, Miriam Filipova
Abstract:
The university education is generally concentrated on acquiring theoretical as well as professional knowledge. The right mix of these knowledges is key in creating innovative as well as inventive solutions. Despite the understanding of their importance by the professional community, these are promoted with problems and misunderstanding. The reason for the failure of many non-traditional, innovative approaches is the ignorance of Leadership in the process of their implementation, ie decision-making. In our paper, we focused on the role of Leadership in the educational process and how this knowledge can support decision-making, the selection of a suitable, optimal solution for practice.Keywords: leadership, soft skills, innovation, invention, knowledge
Procedia PDF Downloads 1897272 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning
Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.Keywords: augmented reality, distance learning, STEM didactics, technology in education
Procedia PDF Downloads 1287271 Improving Numeracy Standards for UK Pharmacy Students
Authors: Luke Taylor, Samantha J. Hall, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman
Abstract:
Medway School of Pharmacy, as part of an Equality Diversity and Inclusivity (EDI) initiative run by the University of Kent, decided to take steps to try and negate disparities in numeracy competencies within students undertaking the Master of Pharmacy degree in order to combat a trend in pharmacy students’ numerical abilities upon entry. This included a research driven project 1) to identify if pharmacy students are aware of weaknesses in their numeracy capabilities, and 2) recognise where their numeracy skillset is lacking. In addition to gaining this student perspective, a number of actions have been implemented to support students in improving their numeracy competencies. Reflective and quantitative analysis has shown promising improvements for the final year cohort of 2014/15 when compared to previous years. The method of involving student feedback into the structure of numeracy teaching/support has proven to be extremely beneficial to both students and teaching staff alike. Students have felt empowered and in control of their own learning requirements, leading to increased engagement and attainment. School teaching staff have received quality data to help improve existing initiatives and to innovate further in the area of numeracy teaching. In light of the recognised improvements, further actions are currently being trialled in the area of numeracy support. This involves utilising Virtual Learning Environment platforms to provide individualised support as a supplement to the increased numeracy mentoring (staff and peer) provided to students. Mentors who provide group or one-to-one sessions are now given significant levels of training in dealing with situations that commonly arise from mentoring schemes. They are also provided with continued support throughout the life of their degree. Following results from this study, Medway School of Pharmacy hopes to drive increasing numeracy standards within Pharmacy (primarily through championing peer mentoring) as well as other healthcare professions including Midwifery and Nursing.Keywords: attainment, ethnicity, numeracy, pharmacy, support
Procedia PDF Downloads 2367270 Increasing Productivity through Lean Manufacturing Principles and Tools: A Successful Rail Welding Plant Case
Authors: T. A. Faria, C. C. Toniolo, L. F. Ribeiro
Abstract:
In order to satisfy the costumer’s needs, many sectors of industry and services has been spending major effort to make its processes more efficient. Facing a situation, when its production cannot cover the demand, the traditional way to achieve the production required involves, mostly, adding shifts, workforce, or even more machines. This paper narrates how lean manufacturing supported a dramatic increase of productivity at a rail welding plant in Brazil in order to meet the demand for the next years.Keywords: productivity, lean manufacturing, rail welding, value stream mapping
Procedia PDF Downloads 3647269 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 647268 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2177267 Single Mothers by Choice at Corona Time - The Perception of Social Support, Happiness and Work-Family Conflict and their Effect on State Anxiety
Authors: Orit Shamir Balderman, Shamir Michal
Abstract:
Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location.Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.Keywords: single mothers by choice, state anxiety, social support, happiness, work–family conflict
Procedia PDF Downloads 857266 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram
Authors: Mary Ann L. Halliday, Zoengpari Gohain
Abstract:
The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS. Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support
Procedia PDF Downloads 2627265 Preparation vADL.net: A Software Architecture Tool with Support to All of Architectural Concepts Title
Authors: Adel Smeda, Badr Najep
Abstract:
Software architecture is a method of describing the architecture of a software system at a high level of abstraction. It represents a common abstraction of a system that stakeholders can use as a basis for mutual understanding, negotiation, consensus, and communication. It also manifests the earliest design decisions about a system, and these early bindings carry weight far out of proportion to their individual gravity with respect to the system's remaining development, its deployment, and its maintenance life, therefore it is the earliest point at which design decisions governing the system to be built can be analyzed. In this paper, we present a tool to model the architecture of software systems. It represents the first method by which system defects can be detected, and provide a clear representation of a system’s components and interactions at a high level of abstraction. It can be distinguished from other tools by its support to all software architecture elements. The tool is built using VB.net 2010. We used this tool to describe two well know systems, i.e. Capitalize and Client/Server, and the descriptions we obtained support all architectural elements of the two systems.Keywords: software architecture, architecture description languages, modeling
Procedia PDF Downloads 4667264 The Role of Teaching Assistants for Deaf Pupils in an England Mainstream Primary School
Authors: Hatice Yildirim
Abstract:
This study is an investigation into ‘The role of teaching assistants (TAs) for deaf pupils in an English primary school’, in order not only to contribute to the education of deaf pupils but also contribute to the literature, in which there has been a lack of attention paid to the role of TAs for deaf pupils. With this in mind, the research design was planned based on using a case study as a qualitative research approach in order to have a deep and first-hand understanding of the case for ‘the role of TAs for deaf pupils’ in a real-life context. 12 semi-structured classroom observations and six semi-structured interviews were carried out with four TAs and two teachers in one English mainstream primary school. The data analysis followed a thematic analysis framework. The results indicated that TAs are utilised based on a one-on-one support model and are deployed under the class teacher in the classroom. Out of the classroom activities are carried out in small groups with the agreement of the TAs and the class teacher, as per the policy of the school. Due to the one-on-one TA support model, the study pointed out the seven different roles carried out by TAs in the education of deaf pupils in an English mainstream primary school. While supporting deaf pupils academically and socially are the main roles of TAs, they also support deaf pupils by recording their progress, communicating with their parents, taking on a pastoral care role, tutoring them in additional support lessons, and raising awareness of deaf pupils’ issues.Keywords: deaf, mainstream, teaching assistant, teaching assistant's roles
Procedia PDF Downloads 2117263 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations
Authors: Teoman Ozer, Ozlem Orhan
Abstract:
This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.Keywords: λ-symmetry, μ-symmetry, classification, invariant solution
Procedia PDF Downloads 3197262 Analysis of Filtering in Stochastic Systems on Continuous- Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
For optimal unbiased filter as mean-square and in the case of functioning anomalous noises in the observation memory channel, we have proved insensitivity of filter to inaccurate knowledge of the anomalous noise intensity matrix and its equivalence to truncated filter plotted only by non anomalous components of an observation vector.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 3627261 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes
Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani
Abstract:
Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot
Procedia PDF Downloads 4217260 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1017259 Effect of R&D Human Capital Support for SMEs: An Analysis of Smes Support Program in South Korea
Authors: Misun Kim, Beomsoo Park
Abstract:
Korean government has strongly supported SMEs financially and technically. It has also changed R&D manpower management so that SMEs can benefit from the knowledge of highly qualified experts. This study evaluates the impacts of such policy on SMEs and analyzes the factors affecting the growth of the firms. Then we compare the characteristics of high growth companies to general companies. This factors could be use in the future for identifying firms that would significantly benefit from manpower help.Keywords: dispatch human Ccapital, high growth, science and technology policy, SMEs
Procedia PDF Downloads 3037258 Public Debt Shocks and Public Goods Provisioning in Nigeria: Implication for National Development
Authors: Amenawo I. Offiong, Hodo B. Riman
Abstract:
Public debt profile of Nigeria has continuously been on the increase over the years. The drop in international crude oil prices has further worsened revenue position of the country, thus, necessitating further acquisition of public debt to bridge the gap in revenue deficit. Yet, when we look back at the increasing public sector spending, there are concerns that the government spending do not amount to increase in public goods provided for the country. Using data from 1980 to 2014 the study therefore seeks to investigate the factors responsible for the poor provision of public goods in the face of increasing public debt profile. Using the unrestricted VAR model Governance and Tax revenue were introduced into the model as structural variables. The result suggested that governance and tax revenue were structural determinants of the effectiveness of public goods provisioning in Nigeria. The study therefore identified weak governance as the major reason for the non-provision of public goods in Nigeria. While tax revenue exerted positive influence on the provisions of public goods, weak/poor governance was observed to crowd the benefits from increase tax revenue. The study therefore recommends reappraisal of the governance system in Nigeria. Elected officers in governance should be more transparent and accountable to the electorates they represent. Furthermore, the study advocates for an annual auditing of all government MDAs accounts by external auditors to ensure (a) accountability of public debts utilization, (b) transparent in implementation of program support funds, (c) integrity of agencies responsible for program management, and (d) measuring program effectiveness with amount of funds expended.Keywords: impulse response function, public debt shocks, governance, public goods, tax revenue, vector auto-regression
Procedia PDF Downloads 2737257 The Relationship Between Social Support, Happiness, Work-Family Conflict and State-Trait Anxiety Among Single Mothers by Choice at Time of Covid-19 Pandemic
Authors: Shamir Balderman Orit, Shamir Michal
Abstract:
Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location. Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.Keywords: single mothers by choice, state anxiety, social support, happiness, work-family conflict
Procedia PDF Downloads 105