Search results for: saline solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5989

Search results for: saline solution

5029 Light and Electron Microscopy Study of Acrylamide-Induced Hypothalamic Neuropathy

Authors: Keivan Jmahidi, Afshin Zahedi

Abstract:

To evaluate neurotoxic effects of ACR on hypothalamus of rat, amino-cupric silver staining technique of de Olmos and electron microscopic examination were conducted. For this purpose 60 adult male Wistar rats (± 250 g) were selected. Randomly assigned groups of rats (10 rats per exposure group, as A, B, C, D, E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days i.p. respectively. The remaining 10 rats were housed in group F as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, daily weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. After 11 days, two rats for silver stain, and two rats for EM, were randomly selected, dissected and proper samples were collected from hypothalamus. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultrastructural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation and clumping inside the axolem, and finaly complete disappearance of laminar sheet were observed.

Keywords: acrylamide (ACR), amino-cupric silver staining technique of de Olmos, argyrophilia, hypothalamic neuropathy

Procedia PDF Downloads 546
5028 Culturable Diversity of Halophilic Bacteria in Chott Tinsilt, Algeria

Authors: Nesrine Lenchi, Salima Kebbouche-Gana, Laddada Belaid, Mohamed Lamine Khelfaoui, Mohamed Lamine Gana

Abstract:

Saline lakes are extreme hypersaline environments that are considered five to ten times saltier than seawater (150 – 300 g L-1 salt concentration). Hypersaline regions differ from each other in terms of salt concentration, chemical composition and geographical location, which determine the nature of inhabitant microorganisms. In order to explore the diversity of moderate and extreme halophiles Bacteria in Chott Tinsilt (East of Algeria), an isolation program was performed. In the first time, water samples were collected from the saltern during pre-salt harvesting phase. Salinity, pH and temperature of the sampling site were determined in situ. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions. Isolates were obtained by plating out the samples in complex and synthetic media. In this study, seven halophiles cultures of Bacteria were isolated. Isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (oxidase, catalase, nitrate reductase and urease), and optimization of growth conditions were done. The results indicated that the salinity optima varied from 50 to 250 g L-1, whereas the optimum of temperature range from 25°C to 35°C. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. The results showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Idiomarina, Halobacillus Thalassobacillus and Planococcus genera and what may represent a new bacterial genus.

Keywords: bacteria, Chott, halophilic, 16S rRNA

Procedia PDF Downloads 285
5027 Innovation and Creativity: Inspiring the Next Generation in the Ethekwini Municipality

Authors: Anneline Chetty

Abstract:

Innovation is not always born in a sterile lab or is not always about applications and technology. Innovative solutions to community challenges can be borne out of the creativity of community members. This was proven by Professor Anil Gupta who for more than two decades scoured rural India for its hidden innovations motivated by the belief that the most powerful ideas for fighting poverty and hardship will not come from corporate research labs, but from ordinary people struggling to survive. The Ethekwini Municipality is a city in South Africa which adopted a similar approach, recognising the innovativeness of youth (students and school pupils) in its area. The intention was to make the youth a part of the solution to challenges faced by the Municipality. In this regard, five areas were selected and five groups of students were identified. Each group was sent into the community to identify challenges and engage with community leaders as well as members. Each group was tasked to come with solutions to these challenges which were to be presented at an Innovation Summit. The presented solutions were judged and the winning solution would be implemented by the Municipality. This paper, documents the experience of the students as well as the kinds of solutions that were presented. The purpose is to highlight the importance of using the ingenious minds and creativity of youth and channel their energy into becoming part of society’s solutions as opposed to being the problem

Keywords: innovation, indigenous, entrepreneurship, community

Procedia PDF Downloads 404
5026 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 117
5025 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382
5024 SnSₓ, Cu₂ZnSnS₄ Nanostructured Thin Layers for Thin-Film Solar Cells

Authors: Elena A. Outkina, Marina V. Meledina, Aliaksandr A. Khodin

Abstract:

Nanostructured thin films of SnSₓ, Cu₂ZnSnS₄ (CZTS) semiconductors were fabricated by chemical processing to produce thin-film photoactive layers for photocells as a prospective lowest-cost and environment-friendly alternative to Si, Cu(In, Ga)Se₂, and other traditional solar cells materials. To produce SnSₓ layers, the modified successive ionic layer adsorption and reaction (SILAR) technique were investigated, including successive cyclic dipping into Na₂S solution and SnCl₂, NaCl, triethanolamine solution. To fabricate CZTS layers, the cyclic dipping into CuSO₄ with ZnSO₄, SnCl₂, and Na₂S solutions was used with intermediate rinsing in distilled water. The nano-template aluminum/alumina substrate was used to control deposition processes. Micromorphology and optical characteristics of the fabricated layers have been investigated. Analysis of 2D-like layers deposition features using nano-template substrate is presented, including the effect of nanotips in a template on surface charge redistribution and transport.

Keywords: kesterite, nanotemplate, SILAR, solar cell, tin sulphide

Procedia PDF Downloads 143
5023 Orthophthalic Polyester Composite Reinforced with Sodium Alginate-Treated Anahaw (Saribus rotundifolius) Fibers

Authors: Terence Tumolva, Johannes Kristoff Vito, Joanna Crystelle Ragasa, Renz Marion Dela Cruz

Abstract:

Natural fiber reinforced polymer (NFRP) composites have been the focus of various research projects due to their advantages over synthetic fiber-reinforced composites. For this study, ana haw is used as the fiber source due to its abundance throughout the Philippines. A problem addressed in this study is the need for an environment-friendly method of fiber treatment. The use of sodium alginate to treat fibers was thus investigated. The fibers were immersed in a sodium alginate solution and then in a calcium chloride solution afterwards. The treated fibers were used to reinforce orthophthalic unsaturated polyester (ortho-UP) resin. The mechanical properties were tested using a universal testing machine (UTM), and the fracture surfaces were characterized using scanning electron microscope (SEM). Results showed that the sodium alginate treatment had increased the tensile and flexural strength of the composite. The increase in fiber load had also been found to increase the stiffness of the composite. However, sodium alginate treatment did not provide any significant improvement in the wet mechanical properties of the NFRP. The composite is comparable to some commercially available polymeric materials.

Keywords: NFRP, composite, alginate, anahaw, polymer

Procedia PDF Downloads 338
5022 Math Anxiety Effects on Complex Addition: An ERP Study

Authors: María Isabel Núñez-Peña, Macarena Suárez Pellicioni

Abstract:

In the present study, we used event-related potentials (ERP) to address the question of whether high (HMA) and low math-anxious (LMA) individuals differ on a complex addition verification task, which involved both carrying and non-carrying additions. ERPs were recorded while seventeen HMA and seventeen LMA individuals performed the verification task. Groups did not differ in trait anxiety or gender distribution. Participants were presented with two-digit additions and were asked to decide whether the proposed solution was correct or incorrect. Behavioral data showed a significant Carrying x Proposed solution x Group interaction for accuracy, showing that carrying additions were more error prone than non-carrying ones for both groups, although the difference non-carrying minus carrying was larger for the HMA group. As for ERPs, a P2 component larger in HMA individuals than in their LMA peers was found both for carrying and non-carrying additions. The P2 was followed by a sustained negative slow wave at parietal positions. Because the negative slow waves are thought to reflect the updating of working memory, these results give support to the relationship among working memory, math performance and math anxiety.

Keywords: math anxiety, carrying, working memory, P2

Procedia PDF Downloads 447
5021 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots

Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi

Abstract:

The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.

Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter

Procedia PDF Downloads 304
5020 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants

Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller

Abstract:

The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.

Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites

Procedia PDF Downloads 155
5019 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method

Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn

Abstract:

The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.

Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry

Procedia PDF Downloads 255
5018 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Authors: N. Zanganeh, M. Zabet

Abstract:

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Keywords: lactulose, lactose, purification, solubility

Procedia PDF Downloads 452
5017 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story

Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu

Abstract:

Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.

Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model

Procedia PDF Downloads 127
5016 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 510
5015 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow

Authors: Shivani Saini

Abstract:

The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.

Keywords: Darcy model, nanofluid, porous layer, throughflow

Procedia PDF Downloads 137
5014 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 225
5013 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 281
5012 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs

Authors: M. De Filippo, J. S. Kuang

Abstract:

In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.

Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line

Procedia PDF Downloads 179
5011 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 242
5010 A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations

Authors: Mohamed Boubekri, Jaewook Lee

Abstract:

The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution.

Keywords: daylight factor, hourly daylight illuminance, daylight autonomy, useful daylight illuminance

Procedia PDF Downloads 285
5009 Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops

Authors: Nikolaos Katsoulas, Ioannis Naounoulis, Sofia Faliagka

Abstract:

Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858.

Keywords: hydroponics, salinity, water use efficiencu, nutrients use efficiency

Procedia PDF Downloads 82
5008 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites

Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac

Abstract:

In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.

Keywords: nanocomposites, core-shell, pyrole, surfactant

Procedia PDF Downloads 403
5007 Factors Motivating Experienced Secondary Teachers to Remain in the Teaching Profession

Authors: Joselito Castro Gutierrez, Herbert Orteza, Jervie Boligon, Kenneth Esteves, Edrick Kevin Ferrer, Mark Kevin Torres, Patrick Vergara

Abstract:

Teaching is a noble profession that involves an effective imparting of holistic learning. Consequently, it requires a driving force called motivation. This research aims to determine the motivating factors, problems encountered, solutions made by experienced secondary school teachers to remain in the teaching profession. A mixed unstructured/structured questionnaire was used for gathering data among public secondary school teachers. The researchers have arrived to a conclusion that the dominant motivating factors of teachers to stay in the profession are altruism, extrinsic factors, and self-efficacy. Meanwhile, the prevalent problems these experienced secondary teachers experienced are mutual dilemma, work overload, and personal issues. Teachers have varied methods on solving the problem which are: a) Direct Solution; b) Indirect Solution; and c) Pseudo-Solutions. Lastly, the factors, problems, and solutions, have influential effects on how long a teacher would sustain in teaching which would manifest as positive, negative and neutral effects.

Keywords: motivation, common problems of teachers, strategies in solving problems, teaching profession

Procedia PDF Downloads 446
5006 Taguchi Method for Analyzing a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.

Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method

Procedia PDF Downloads 191
5005 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 118
5004 Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production

Authors: Sonia Mbarki Marian Brestic, Artemio Cerda Naceur Jedidi, Jose Antonnio Pascual Chedly Abdelly

Abstract:

Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium.

Keywords: compost, enzymatic activity, lolium perenne, bioremediation

Procedia PDF Downloads 380
5003 An Integrated 5G, Geomagnetic, and Inertial Measurement Unit Fusion Approach for Indoor Positioning

Authors: Chen Zhang, Wei He, Yue Jin, Zengshan Tian, Kaikai Liu

Abstract:

With the widespread adoption of the Internet of Things and smart devices, the demand for indoor positioning technology with high accuracy and robustness continues to grow. Traditional positioning methods such as fingerprinting, channel parameter estimation techniques (TDoA, AoA), and Pedestrian Dead Reckoning (PDR) each have their limitations. Fingerprinting is highly sensitive to environmental changes, channel parameter estimation is only effective in line-of-sight conditions, and PDR is prone to sensor errors and magnetic interference. To overcome these limitations, multisensor fusion-based positioning methods have become a mainstream solution. This paper proposes a dynamic positioning system that integrates 5G TDoA, geomagnetic fingerprinting, and PDR. The system uses 5G TDoA for high-precision starting point positioning, corrects PDR heading with geomagnetic declination, and refines PDR positioning accuracy using geomagnetic fingerprints. Experimental results demonstrate that this method improves positioning accuracy and stability in complex indoor environments, overcoming the limitations of traditional methods and providing a reliable indoor positioning solution.

Keywords: 5G TDoA, magnetic fields, pedestrian dead reckoning, fusion location

Procedia PDF Downloads 3
5002 A Comparative Study of Morphine and Clonidine as an Adjunct to Ropivacaine in Paravertebral Block for Modified Radical Mastectomy

Authors: Mukesh K., Siddiqui A. K., Abbas H., Gupta R.

Abstract:

Background: General Anesthesia is a standard for breast onco-surgery. The issue of postoperative pain and the occurrence of nausea and vomiting has prompted the quest for a superior methodology with fewer complications. Over the recent couple of years, paravertebral block (PVB) has acquired huge fame either in combination with GA or alone for anesthetic management. In this study, we aim to evaluate the efficacy of morphine and clonidine as an adjunct to ropivacaine in a paravertebral block in breast cancer patients undergoing modified radical mastectomy. Methods: In this study, total 90 patients were divided into three groups (30 each) on the basis of computer-generated randomization. Group C (Control): Paravertebral block with 0.25% ropivacaine (19ml) and 1 ml saline; Group M- Paravertebral block with 0.25% ropivacaine(19ml) + 20 microgram/kg body weight morphine; Group N: Paravertebral block with 0.25% ropivacaine(19ml) +1.0 microgram/kg body weight clonidine. The postoperative pain intensity was recorded using the visual analog scale (VAS) and Sedation was observed by the Ramsay Sedation score (RSS). Results: The VAS was similar at 0hr, 2hr and 4 hr in the postoperative period among all the groups. There was a significant (p=0.003) difference in VAS from 6 hr to 20 hr in the postoperative period among the groups. A significant (p<0.05) difference was observed among the groups at 8 hr to 20 hr). The first requirement of analgesia was significantly (p=0.001) higher in Group N (7.70±1.74) than in Group C (4.43±1.43) and Group M (7.33±2.21). Conclusion: The morphine in the paravertebral block provides better postoperative analgesia. The consumption of rescue analgesia was significantly reduced in the morphine group as compared to the clonidine group. The procedure also proved to be safe as no complication was encountered in the paravertebral block in our study.

Keywords: ropivacaine, morphine, clonidine, paravertebral block

Procedia PDF Downloads 117
5001 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia

Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily

Abstract:

Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.

Keywords: biodiversity, classification, conservation, ordination, Red Sea

Procedia PDF Downloads 343
5000 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase

Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk

Abstract:

The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.

Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides

Procedia PDF Downloads 328